期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
基于全U网络的混凝土路面裂缝检测算法 被引量:8
1
作者 瞿中 谢钇 《计算机科学》 CSCD 北大核心 2021年第4期187-191,共5页
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池... 针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验。结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%,相较于原U-net分别提升了1.48%,4.68%和3.29%,在复杂环境中也能提取完整裂缝,保证了裂缝检测的鲁棒性。 展开更多
关键词 裂缝检测 u-net模型 u网络
下载PDF
U型卷积网络在乳腺医学图像分割中的研究综述 被引量:1
2
作者 蒲秋梅 殷帅 +1 位作者 李正茂 赵丽娜 《计算机科学与探索》 CSCD 北大核心 2024年第6期1383-1403,共21页
U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网... U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网络设计产生了深远影响。深入探讨了基于U型卷积网络在乳腺医学图像分割中的应用,并对近年来用于乳腺医学图像分割的U型卷积网络进行了分类与归纳。针对U-Net网络结构改进的乳腺医学图像分割技术进行了如下总结。阐述了目前广泛使用的乳腺医学图像数据集及评价指标,陈述了常用的数据增强方法;详细介绍了U-Net模型的网络结构以及用于乳腺医学图像的传统分割方法;对用于乳腺医学图像分割方法的U型网络结构按照残差结构、多尺度特征、膨胀机制、注意力机制、跳跃连接机制、结合Transformer等方面改进进行归纳总结。讨论了当下乳腺医学图像分割所遇到的问题与挑战,对未来的研究走向做出了展望。 展开更多
关键词 医学图像分割 u型卷积网络 深度学习 乳腺疾病 图像处理
下载PDF
基于UNet3+生成对抗网络的视频异常检测 被引量:1
3
作者 陈景霞 林文涛 +1 位作者 龙旻翔 张鹏伟 《计算机工程与设计》 北大核心 2024年第3期777-784,共8页
为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别... 为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别对连续输入的视频帧生成预测,引入多种损失函数和光流模型学习其外观与运动信息,通过计算AUC进行性能评估。U3P^(2)方法以6.3 M参数量在Ped2数据集的AUC提升约0.6%,而UP^(3)方法在Avenue数据集的AUC提升约0.8%,验证其能够有效应对不同场景下的异常检测任务。 展开更多
关键词 生成对抗网络 视频异常检测 u型卷积网络 全尺度跳跃连接 密集跳跃连接 光流模型 多尺度特征提取
下载PDF
双U型门控网络融合非局部先验的图像压缩感知重建方法
4
作者 林乐平 胡尚鋆 欧阳宁 《计算机应用研究》 CSCD 北大核心 2024年第11期3509-3514,共6页
针对目前基于非迭代式网络的图像压缩感知重建方法存在着细节处理能力不足以及测量值利用不充分的问题,提出了一种双U型门控网络(dual U-shaped gated network, DUGN)用于图像压缩感知重建。该方法在原有的U型结构网络的基础上进行了改... 针对目前基于非迭代式网络的图像压缩感知重建方法存在着细节处理能力不足以及测量值利用不充分的问题,提出了一种双U型门控网络(dual U-shaped gated network, DUGN)用于图像压缩感知重建。该方法在原有的U型结构网络的基础上进行了改进,提升了U型结构网络在压缩感知任务中的学习能力。在测量值的利用上,结合交叉注意力机制,提出了一种测量值非局部融合模块(measurements non-local fusion, MNLF),用于将测量值中的非局部信息融合到深层网络中,指导网络进行重建,提升模型性能。此外,在基本模块的设计上,提出了窗口门控网络模块(window gated network, WGN),增强了网络的细节处理能力。实验结果表明,与已有的压缩感知重建方法相比,DUGN在Set11数据集上有着更高的PSNR和SSIM,且在图像重建的真实性上有着更好的表现。 展开更多
关键词 图像压缩感知重建 非局部先验 u网络 门控网络
下载PDF
融合Transformer和CNN的U型神经网络遥感影像道路提取算法
5
作者 高琳 陈晨 张咏琪 《计算机科学与应用》 2024年第1期134-146,共13页
U型网络作为一种经典的编码–解码结构网络,不只在医学影像领域内发挥出色,在图像分割领域也有广泛的影响。以U型网络为基础其它衍生网络层出不穷。U型网络最经典的思想是编码和解码,再加上编解码之间的跳跃连接。由于道路遥感图像和医... U型网络作为一种经典的编码–解码结构网络,不只在医学影像领域内发挥出色,在图像分割领域也有广泛的影响。以U型网络为基础其它衍生网络层出不穷。U型网络最经典的思想是编码和解码,再加上编解码之间的跳跃连接。由于道路遥感图像和医学影像有众多相似的地方,如今U型网络又被用于从遥感图像中提取道路。U型网络使用跳跃连接的方式将下采样低维特征拼接到上采样的高维特征中,以保留更多的空间位置信息和语义信息。因此U型网络更能处理一些特征信息明显的图像数据。但浅层的UNet无法准确提取道路丰富多维的细节信息,在高分辨率卫星遥感图像上无法奏效。所以本文提出一种融合蛇形动态卷积和Swin-Transformer的U型网络用于提高道路提取任务的分割精确度。 展开更多
关键词 u网络 遥感图像 蛇形动态卷积 Swin-Transformer 道路提取
下载PDF
混合U型网络与Transformer的图像去模糊
6
作者 陈清江 邵菲 王炫钧 《计算机工程与科学》 CSCD 北大核心 2024年第10期1843-1851,共9页
针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法。首先,使用一个多尺度特征提取模块提取图像的浅层特征信息。然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留... 针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法。首先,使用一个多尺度特征提取模块提取图像的浅层特征信息。然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留图像细节信息的同时获取图像深层特征信息。再次,构建了一个局部-全局残差细化模块,通过卷积神经网络和SwinTransformer之间的信息交互充分提取全局和局部信息,并实现特征信息的进一步细化。最后,使用一个1×1卷积层进行特征重建。所提方法在GoPro数据集上的实验结果显示,图像的峰值信噪比和结构相似度均值分别为32.92和0.964,均优于其他对比方法。实验结果表明,所提方法可以有效地去除模糊,重建出具有丰富细节的潜在清晰图像。 展开更多
关键词 图像去模糊 细节信息 层级嵌套u型子网络 TRANSFORMER 多尺度特征
下载PDF
基于U形多层感知机网络的地震波初至拾取与反演
7
作者 孙明皓 余瀚 +1 位作者 陈雨青 陆恺 《计算机应用》 CSCD 北大核心 2024年第7期2301-2309,共9页
针对传统勘探地震波初至拾取工作量大、抗噪性差和精度低所导致的低质量速度反演影响生产安全的问题,提出一种基于U形多层感知机(U-MLP)网络的地震波初至拾取与反演方法。首先,为解决传统U形网络(U-Net)中的交叉熵损失函数在数据类别不... 针对传统勘探地震波初至拾取工作量大、抗噪性差和精度低所导致的低质量速度反演影响生产安全的问题,提出一种基于U形多层感知机(U-MLP)网络的地震波初至拾取与反演方法。首先,为解决传统U形网络(U-Net)中的交叉熵损失函数在数据类别不平衡时导致的性能变差问题,设计一种基于加权交叉熵Lovász归一化指数(WLS)的损失函数;然后,在特征融合阶段引入残差连接,缩小低级特征与高级特征间的差距,还原更多细节信息;最后,为使U-MLP网络更好学习图像局部特征,为高级语义引入标记化的多层感知机(MLP)模块,此模块降低了参数量和计算复杂度。实验结果表明,与U-Net相比,U-MLP网络在训练中收敛性更强,初至拾取最大误差降低了20%以上,交并比(IoU)值提升了约2%。可见,U-MLP网络在提取勘探地震波初至时不仅提高了拾取精度,而且拾取的初至在仿真数据和实际数据中的速度分布反演均达到了理想效果,具有更好的性能且适应性更强。 展开更多
关键词 u网络 多层感知机 初至拾取 反演 成像
下载PDF
基于密集残差连接U型网络的噪声图像超分辨率重建
8
作者 刘鹏南 李龙 +2 位作者 张紫豪 朱星光 程德强 《工矿自动化》 CSCD 北大核心 2024年第2期63-71,共9页
现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨... 现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨率重建。在特征提取路径中引入基于密集残差连接的去噪模块,通过密集连接的方式对图像特征进行充分提取,再利用残差学习的特点对低分辨率噪声图像进行有效去噪;在重建路径中引入残差特征注意力蒸馏模块,通过在残差块中融入增强特征注意力块,对不同空间的特征赋予不同的权重,加强网络对于图像关键特征的提取能力,同时减少图像细节特征在残差块中的损失,从而更好地恢复图像细节信息。在煤矿井下图像数据集及公共数据集上进行了对比实验,结果表明:在客观评价指标上,所提网络的结构相似度、图像感知相似度均优于对比网络,且在复杂度及运行速度上有着较好的均衡;在主观视觉效果上,所提网络重建的图像基本消除了原有图像噪声,有效恢复了图像的细节特征。 展开更多
关键词 噪声图像 超分辨率重建 密集残差连接 u网络 去噪模块 残差特征注意力蒸馏模块
下载PDF
基于多尺度全局注意力的U型视网膜血管分割网络
9
作者 麻文静 王雪津 +1 位作者 邢树礼 毛国君 《软件》 2024年第1期21-24,37,共5页
眼底视网膜血管分割在多种类型眼科疾病的评估和诊断中起着重要作用。由于眼底图像中血管的拓扑结构复杂多变,现有算法通常存在分割结果中血管特征不连续以及血管边缘分割准确度不高的问题。针对上述问题,本文提出一种用于视网膜血管分... 眼底视网膜血管分割在多种类型眼科疾病的评估和诊断中起着重要作用。由于眼底图像中血管的拓扑结构复杂多变,现有算法通常存在分割结果中血管特征不连续以及血管边缘分割准确度不高的问题。针对上述问题,本文提出一种用于视网膜血管分割的多尺度全局注意力U型神经网络MSGA-UNet。该网络一方面通过全局特征注意力模块从编码器中较为容易地获得图像的全局表征信息,解决眼底视网膜血管分割中特征不连续的问题;另一方面利用多尺度空洞卷积模块,利用不同膨胀率的空洞卷积扩大感受野并获取图像的多尺度局部特征信息,从而提升血管边缘信息的提取能力。经过在DRIVE、STARE和CHASEDB1数据集上的实验,MSGA-UNet的平均交并比分别为74.06%、78.22%和79.62%;类别平均像素准确率分别为80.39%、84.60%和85.53%;精确度分别为96.32%,96.42%和97.23%;综合分割性能优于其他模型。 展开更多
关键词 医学图像分割 视网膜血管 u网络 TRANSFORMER 注意力
下载PDF
基于改进U型神经网络的路面裂缝检测方法 被引量:4
10
作者 惠冰 李远见 《交通信息与安全》 CSCD 北大核心 2023年第1期105-114,131,共11页
针对传统的裂缝分割算法难以识别狭窄裂缝且分割边缘不精准,从而造成识别精度较低的问题,研究了基于改进U型神经网络(Unet)的路面裂缝检测方法。由于传统Unet特征提取网络是层次较浅的浅层神经网络,难以提取更复杂的裂缝特征信息,故本... 针对传统的裂缝分割算法难以识别狭窄裂缝且分割边缘不精准,从而造成识别精度较低的问题,研究了基于改进U型神经网络(Unet)的路面裂缝检测方法。由于传统Unet特征提取网络是层次较浅的浅层神经网络,难以提取更复杂的裂缝特征信息,故本文以牛津大学视觉几何组网络(VGG16)作为传统Unet的特征提取网络,提高网络的裂缝特征提取能力;为抑制高低阶特征融合时产生的无用特征,本文在模型解码部分添加压缩与激励单元(SE block),构建裂缝注意力单元,使得网络可以关注不同通道下的裂缝特征,建立了基于SE block和VGG16的改进Unet网络(SE-VUnet)。研究采用迁移学习的方法,将在ImageNet上预训练好的VGG16网络权重迁移到裂缝检测中。通过挑选Crack500数据集,并使用摄像头采集图片构建1 600张路面裂缝数据集,再次训练SE-VUnet模型,获得裂缝区域分割结果。以查准率(precision)与查全率(recall)的加权调和平均值F1和雅卡尔(Jaccard)相似系数作为量化评价指标。将SE-VUnet分别与Unet、SOLO v2、Mask R-CNN以及Deeplabv3+进行分割效果和实时性对比。研究结果表明:SE-VUnet模型的综合F1和雅卡尔系数分别为0.840 3和0.722 1,相比于Unet分别高出了1.04%和1.51%,且均高于其他3种对比模型;SE-VUnet的单帧图片预测时间为89 ms,在分割效果提升明显的情况下仅比Unet慢5 ms,优于其他模型。 展开更多
关键词 信息工程 裂缝检测 u型神经网络 深度学习 语义分割
下载PDF
基于深度残差U型网络的果园环境识别
11
作者 商高高 朱鹏 刘刚 《计算机应用与软件》 北大核心 2023年第5期235-242,共8页
果园环境复杂多变,传统机器视觉识别算法易受到光照阴影等因素影响,识别目标能力有限且精度较低。深度残差U型网络可对果园环境中的树木、可行驶道路、杂物等进行语义分割。网络基本结构采用U型网络,在编码层和瓶颈层中加入残差学习,利... 果园环境复杂多变,传统机器视觉识别算法易受到光照阴影等因素影响,识别目标能力有限且精度较低。深度残差U型网络可对果园环境中的树木、可行驶道路、杂物等进行语义分割。网络基本结构采用U型网络,在编码层和瓶颈层中加入残差学习,利用残差模块提升网络深度,增强不同层次的语义信息融合,提高特征表达能力和识别准确率;解码层中采用上采样进行特征映射,方便快捷,并通过跳跃连接融合编码层的语义信息,减少网络参数,加速训练。通过PyTorch深度学习框架搭建网络,训练数据集,并将该网络与全卷积神经网络和U型网络进行对比实验,结果表明深度残差U型网络识别准确率最高,平均交并比为83.3%,适用于果园环境识别。 展开更多
关键词 环境识别 机器视觉 深度残差u网络 语义分割 信息融合
下载PDF
基于Transformer的U型医学图像分割网络综述 被引量:6
12
作者 傅励瑶 尹梦晓 杨锋 《计算机应用》 CSCD 北大核心 2023年第5期1584-1595,共12页
目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥... 目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥补CNN的不足,结合Transformer和U型结构的分割网络成为研究热点之一。在详细介绍U-Net和Transformer之后,按医学图像分割模型中Transformer模块所处的位置,包括仅在编码器或解码器、同时在编码器和解码器、作为过渡连接和其他位置进行分类,讨论各模型的基本内容、设计理念以及可改进的地方,并分析了Transformer处于不同位置的优缺点。根据分析结果可知,决定Transformer所在位置的最大因素是目标分割任务的特点,而且Transformer结合U-Net的分割模型能更好地利用CNN和Transformer各自的优势,提高模型的分割性能,具有较大的发展前景和研究价值。 展开更多
关键词 深度学习 卷积神经网络 医学图像分割 u网络 TRANSFORMER
下载PDF
噪声和U型判别网络的真实世界图像超分辨率 被引量:2
13
作者 李灏 杨志景 +1 位作者 王美林 凌永权 《计算机工程与应用》 CSCD 北大核心 2023年第6期204-211,共8页
以往基于卷积神经网络的图像超分辨率算法往往是在理想的合成数据进行训练,当应用在真实世界(Real-World)场景时性能就会严重下降。为更好地提取出Real-World图像中的原有特征信息,为其降质过程建模,提出一种噪声和U型判别网络的Real-Wo... 以往基于卷积神经网络的图像超分辨率算法往往是在理想的合成数据进行训练,当应用在真实世界(Real-World)场景时性能就会严重下降。为更好地提取出Real-World图像中的原有特征信息,为其降质过程建模,提出一种噪声和U型判别网络的Real-World图像超分辨率算法。利用直接收集到的Real-World图像原有的复杂噪声信息,结合合成的降质图像,达到降质后图像与源图像保持特征分布相似的目的,以恢复更多的细节信息和更好的观感。此外,提出使用频谱归一正则化的U型判别网络,以提高判别网络的能力和稳定训练,抑制图像重建中伪影的出现。在三个基准数据集上的实验结果表明,与最新的方法相比,该模型在三个评价指标(峰值信噪比、结构相似度和感知图像块相似度)上均取得了最好的结果,且有着更好的观感效果。 展开更多
关键词 超分辨率 真实世界图像 噪声 降质过程 u型判别网络
下载PDF
基于心脏磁共振电影图像的压缩激励残差U形网络左心肌分割 被引量:1
14
作者 王慧 王甜甜 王丽嘉 《波谱学杂志》 CAS 北大核心 2023年第4期435-447,共13页
左心肌分割对心脏疾病诊疗具有重要意义.但左心肌内部毗邻乳头肌、小梁,外部与周围组织灰度相近,是分割难点.本文首先对心脏磁共振电影图像数据进行感兴趣区域提取等预处理;其次,搭建融合了压缩激励模块和残差模块的U形网络(SERU-net)... 左心肌分割对心脏疾病诊疗具有重要意义.但左心肌内部毗邻乳头肌、小梁,外部与周围组织灰度相近,是分割难点.本文首先对心脏磁共振电影图像数据进行感兴趣区域提取等预处理;其次,搭建融合了压缩激励模块和残差模块的U形网络(SERU-net)分割左心肌;最后,利用75例数据训练SERU-net网络,对18例数据进行预测.基于本文方法的分割结果相对于金标准的Dice系数与豪斯多夫距离均值分别是0.902、2.697 mm;利用本文方法分割得到的舒张末期、收缩末期左心室心肌质量与金标准的相关系数和偏差均值分别是0.995、0.993和3.784 g、2.338 g.结果表明,本文方法与金标准匹配程度较高,有望辅助诊断心脏疾病. 展开更多
关键词 心脏磁共振电影图像 左心肌分割 压缩激励残差u网络 深度学习
下载PDF
基于U型卷积神经网络的微地震信号降噪方法 被引量:2
15
作者 郑路佳 管闯 +2 位作者 李含阳 李航 董宏丽 《东北石油大学学报》 CAS 北大核心 2023年第5期111-124,I0008,共15页
降噪后的微地震信号存在波形失真问题,基于U型卷积神经网络,引入膨胀系数的空洞卷积,建立U型卷积降噪模型,利用包络熵作为损失函数,对实际微地震信号进行无监督处理,并将U型卷积神经网络的微地震降噪方法(U-NetNA方法)与小波阈值法、时... 降噪后的微地震信号存在波形失真问题,基于U型卷积神经网络,引入膨胀系数的空洞卷积,建立U型卷积降噪模型,利用包络熵作为损失函数,对实际微地震信号进行无监督处理,并将U型卷积神经网络的微地震降噪方法(U-NetNA方法)与小波阈值法、时频峰值法、卷积神经网络降噪方法的降噪效果进行对比。结果表明:U-NetNA方法可以应用于合成和实际微地震数据降噪,具有可行性和有效性。与其他方法相比,U-NetNA方法得到更丰富的有效信号特征,能够有效压制噪声,提高微地震信号信噪比。该结果对微地震事件识别、反演定位和裂缝解释等具有参考意义。 展开更多
关键词 u型卷积神经网络 噪声压制 空洞卷积 包络熵 微地震信号 u-NetNA方法
下载PDF
基于U⁃Rnet的重力全张量梯度数据反演 被引量:1
16
作者 祁锐 李厚朴 +1 位作者 胡佳心 罗莎 《石油地球物理勘探》 EI CSCD 北大核心 2024年第2期331-342,共12页
重力反演是通过地表信息获取地下地质体空间结构与物理性质的重要手段之一。每个重力梯度分量反映不同的地质体信息,联合重力梯度分量进行重力反演能够更好地研究地下密度异常体的形态和分布。为此,提出基于神经网络的重力全张量梯度数... 重力反演是通过地表信息获取地下地质体空间结构与物理性质的重要手段之一。每个重力梯度分量反映不同的地质体信息,联合重力梯度分量进行重力反演能够更好地研究地下密度异常体的形态和分布。为此,提出基于神经网络的重力全张量梯度数据反演算法,将U⁃Rnet网络应用于重力全张量数据的三维反演问题。为了检验该算法的有效性,采用六种典型模型进行模拟实验,获得了具有清晰边界和稀疏的反演结果。首先,对比L2和Tversky两种损失函数的反演结果,后者的反演结果能更清晰地反映模型的边界位置;然后,对不同梯度张量组合进行反演,四组实验结果在三个方向(x、y、z)上具有不同的反演精度,组合四的误差最低;最后,将该方法应用于美国德克萨斯州文顿盐丘的FTG数据,反演结果与实际地质信息基本吻合。 展开更多
关键词 梯度张量 u⁃Rnet网络 正演 重力反演 文顿盐丘
下载PDF
基于U1-net网络的放疗脑肿瘤靶区分割
17
作者 张本健 林辉 +2 位作者 郭栋 王桂林 胡敏 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第8期1070-1078,共9页
文章基于全卷积神经网络(fully convolutional network,FCN)的U-net网络,并通过对U-net网络的调整,构建适用于脑肿瘤图像分割的U1-net网络。U1-net网络由卷积层、最大池化层、反卷积层和激活函数4个部分组成。通过在公共数据集BRATS 201... 文章基于全卷积神经网络(fully convolutional network,FCN)的U-net网络,并通过对U-net网络的调整,构建适用于脑肿瘤图像分割的U1-net网络。U1-net网络由卷积层、最大池化层、反卷积层和激活函数4个部分组成。通过在公共数据集BRATS 2015上的实验验证了该网络的有效性。实验结果表明,该网络能适应脑肿瘤轮廓取得较好的分割效果,在脑肿瘤的完整肿瘤区、核心肿瘤区、增强肿瘤区的Dice相似系数(Dice similarity coefficient,DSC)分别为0.95、0.85、0.83。 展开更多
关键词 深度学习(DL) 全卷积神经网络(FCN) u1-net网络 BRATS 2015数据集 脑肿瘤分割
下载PDF
面向遥感地类变化检测的U型深度学习神经网络改进方法 被引量:4
18
作者 沈鑫甦 嵇灵 《测绘通报》 CSCD 北大核心 2023年第6期93-97,103,共6页
遥感影像的变化检测在调查监测等自然资源管理中有着广泛应用。针对样本库建设成本过高、深度学习算法困难等问题,本文提出了多时相变化检测方法,以改进影像变化深度学习检测。该方法将不同时相的数据作为不同波段信息进行融合,将变化... 遥感影像的变化检测在调查监测等自然资源管理中有着广泛应用。针对样本库建设成本过高、深度学习算法困难等问题,本文提出了多时相变化检测方法,以改进影像变化深度学习检测。该方法将不同时相的数据作为不同波段信息进行融合,将变化发现任务转换为图像分割任务,将土地利用矢量数据作为标签数据用于模型训练,建设深度学习样本库。对原始的U型深度学习神经网络结构进行改进,加速模型训练。试验结果表明:①多时相变化检测方法有利于模型训练过程中学习更多的特征,提升了模型的特征提取能力,可得到更好的预测效果;②模型的查全率和查准率都有一定提升,整体预测效果明显提高。 展开更多
关键词 多时相变化检测 遥感影像变化发现 u型神经网络 深度学习
下载PDF
基于卷积神经网络的颅内囊状动脉瘤半自动分割模型的构建与验证研究
19
作者 耿介文 王思敏 +2 位作者 胡鹏 何川 张鸿祺 《中国脑血管病杂志》 CAS CSCD 北大核心 2024年第9期577-586,共10页
目的基于卷积神经网络创建一种半自动的颅内囊状动脉瘤分割技术。方法回顾性连续纳入2017年7月至2020年7月“中国颅内动脉瘤计划”数据库中首都医科大学宣武医院的单中心数据,所有数据在分析前均进行了匿名处理。收集所有患者的基线资料... 目的基于卷积神经网络创建一种半自动的颅内囊状动脉瘤分割技术。方法回顾性连续纳入2017年7月至2020年7月“中国颅内动脉瘤计划”数据库中首都医科大学宣武医院的单中心数据,所有数据在分析前均进行了匿名处理。收集所有患者的基线资料,包括性别、年龄(≥60岁和<60岁)和DSA机型、DSA序列数及动脉瘤信息,包括动脉瘤个数、直径(≥5 mm和<5 mm)、颈宽(宽颈、窄颈)及位置(分叉部、侧壁)。根据8∶1∶1的比例将数据通过随机数字表法随机分为训练集、测试集和验证集。3个数据集患者的DSA三维断层数据均采用三维旋转DSA模式在造影机完成,并由3位有经验的神经外科医师对DSA三维断层数据显示的动脉瘤进行标注,并最终生成动脉瘤的标准标签。动脉瘤分割模型包括训练阶段和分割阶段。训练阶段,使用训练集的DSA三维断层图像数据与动脉瘤的分割标签以及通过Marching Cubes算法提取的血管边缘信息,对模型进行端到端的训练,在测试集上监控模型的分割指标,保留分割指标最高的模型。分割阶段,医师在验证集的动脉瘤DSA三维断层图像上选择一个动脉瘤内部的点,截取感兴趣体积(VOI),输入训练好的血管与动脉瘤分割最优模型,得到动脉瘤的分割结果,将分割的VOI定位回原始DSA三维断层图像以获得最终的动脉瘤轮廓。将分割网络模型的分割结果与人工获取的标准标签进行比较,以计算Dice相似系数(DSC)。对验证集数据按照动脉瘤直径、颈宽、位置进行分层,以比较不同亚组间的DSC。计算动脉瘤分割掩膜的长、宽和高的边界框,将其中的最大值作为动脉瘤的最大直径,与标准标签中的最大直径进行对比。在验证集中统计并比较颅内动脉瘤标准标签人工获取时间与分割网络模型获取时间(从定位动脉瘤到获取满意的动脉瘤颈分割时间)。结果最终纳入了756例患者的969个DSA序列显示的1094个动脉瘤的三维断层数据。其中,训练集纳入604例患者共783个DSA序列的877个动脉瘤,测试集纳入77例患者共100个DSA序列的117个动脉瘤,验证集纳入75例患者共86个DSA序列的100个动脉瘤。(1)各数据集基线比较结果显示,动脉瘤直径(P=0.003)、动脉瘤位置(P=0.003)的各数据集间的差异有统计学意义。余基线资料各数据集间差异无统计学意义(均P>0.05)。(2)验证集中动脉瘤分割的平均DSC为0.868±0.078。直径≥5 mm的动脉瘤分割的平均DSC高于直径<5 mm的动脉瘤(0.891±0.041比0.855±0.088,P=0.038)。窄颈、宽颈、分叉、侧壁动脉瘤分割的DSC值分别为0.882±0.065、0.859±0.085、0.876±0.072及0.863±0.080,组间差异均无统计学意义(均P>0.05)。(3)动脉瘤分割模型在验证集所得到的掩膜最大直径与人工分割获得的标准标签的最大直径有较好的一致性[(5.78±3.18)mm比(5.37±2.92)mm,r=0.97]。在验证集中,人工分割与应用神经网络分割动脉瘤的平均时长分别为2.5 min、34 s。结论本研究基于卷积神经网络创建半自动的颅内囊状动脉瘤分割技术可较为准确分割动脉瘤,该模型有助于动脉瘤形态学分析。 展开更多
关键词 颅内囊性动脉瘤 分割模型 神经网络 u网络结构 Dice相似系数
下载PDF
基于U形卷积神经网络的震相识别与到时拾取方法研究 被引量:67
20
作者 赵明 陈石 +1 位作者 房立华 David A Yuen 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2019年第8期3034-3042,共9页
精确获取震相到时是地震定位和地震走时成像等研究的重要基础.近年来,随着地震台站的不断加密,地震台网监测到的地震数量成倍增长,发展快速、准确、适用性强的震相到时自动拾取算法是地震行业的迫切需求.本文在前人工作基础上,发展了Pg... 精确获取震相到时是地震定位和地震走时成像等研究的重要基础.近年来,随着地震台站的不断加密,地震台网监测到的地震数量成倍增长,发展快速、准确、适用性强的震相到时自动拾取算法是地震行业的迫切需求.本文在前人工作基础上,发展了Pg、Sg震相自动识别与到时拾取的U网络算法(Unet_cea),使用汶川余震和首都圈地震台网记录的89344个不同震级、不同信噪比的样本进行训练和测试.研究表明,U网络能够较好地识别Pg、Sg震相类型和拾取到时,Pg、Sg震相的正确识别率分别为81%和79.1%,与人工标注到时的均方根误差分别为0.41s和0.54s.U网络在命中率、均方根误差等性能指标上均明显优于STA/LTA和峰度分析自动拾取方法.研究获得的最优模型可以为区域地震台网的自动处理提供辅助. 展开更多
关键词 u网络 震相识别 区域地震台网 汶川余震
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部