Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting...Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting Cr(Ⅵ) reduction rate including carbon source type, pH, initial Cr(Ⅵ) concentration and amount of cells inoculum were thoroughly studied. Malate was found to yield maximum biotransformation, followed by succinate and glucose, with the reduction rate of 60.86%, 43.76% and 28.86% respectively. The optimum pH for Cr(Ⅵ) reduction was 7.0, with reduction efficiency of 61.71% being achieved. With the increase of initial Cr(Ⅵ) concentration, the rate of Cr(Ⅵ) reduction decreased. The reduction was inhibited strongly when the initial Cr(Ⅵ) concentration increased to 157 mg/L. As the amount of cells inoculum increased, the rate of Cr(Ⅵ) reduction also increased. The mechanism of Cr(Ⅵ) reduction and final products were also analysed. The results suggested that the soluble enzymes appear to be responsible for Cr(Ⅵ) reduction by Pseudomonas aeruginosa, and the reduced Cr(Ⅲ) was not precipitated in the form of Cr(OH) 3.展开更多
Semiconductor photocatalytic technology is widely recognized as one of the most promising technologies to solve current energy and environmental crisis, due to its ability to make effective use of solar energy. In rec...Semiconductor photocatalytic technology is widely recognized as one of the most promising technologies to solve current energy and environmental crisis, due to its ability to make effective use of solar energy. In recent years, graphite carbon nitride(g-C3N4), a new type of non-metallic polymer semiconductor photocatalyst, has rapidly become the focus of intense research in the field of photocatalysis because of its suitable bandgap energy, unique structure, and excellent chemical stability. In order to improve its intrinsic shortages of small specific surface area, narrow visible light response range, high electron-hole pair recombination rate, and low photon quantum efficiency, a simple method was utilized to synthesize Br-doped g-C3N4(CN–Br X, X = 5, 10, 20, 30), where X is a percentage mole ratio of NH4 Br to melamine. Experimental results showed that Br atoms were doped into the g-C3N4 lattice by replacing the bonded N atoms in the form of C–N=C, while the derived material retained the original framework of g-C3N4. The interaction of Br element with the g-C3N4 skeleton not only broadened the visible-light response of g-C3N4 to 800 nm with an adjustable band gap, but also greatly promoted the separation efficiency of the photogenerated charge carrier and the surface area. The photocurrent intensity of bare CN and CN–Br X(X = 5, 10, 20, 30) catalysts is calculated to be 1.5, 2.0, 3.1, 6.5, and 1.9 μA, respectively. And their specific surface area is measured to be 9.086, 9.326, 15.137, 13.397, and 6.932 m2/g. As a result, this Br-doped g-C3N4 gives significantly enhanced photocatalytic reduction of Cr(VI), achieving a twice enhancement over g-C3N4, with high stability during prolonged photocatalytic operation compared to bare g-C3N4 under visible light irradiation. Furthermore, an underlying photocatalytic reduction mechanism was proposed based on control experiments using radical scavengers.展开更多
Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown Bi...Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ).展开更多
The experiments were conducted to evaluate the Cr(Ⅵ)resistance and reduction by Pseudomonas aeruginosa.After this bacterium tolerated 40 mg/L Cr(Ⅵ),the growth of cells was observed.The bacterial growth was obviously...The experiments were conducted to evaluate the Cr(Ⅵ)resistance and reduction by Pseudomonas aeruginosa.After this bacterium tolerated 40 mg/L Cr(Ⅵ),the growth of cells was observed.The bacterial growth was obviously lower than the controls over 24 h and the binary cell fission was observed in cell morphology by scanning electron microscope.P.aeruginosa was found to be able to reduce Cr(Ⅵ)although Cr(Ⅵ)had toxic effects on the cells.The results demonstrate that Cr(Ⅵ)is reduced from 40 mg/L to about 18 mg/L in 72 h.The value of pH drops from 7.02 to around 5.65 after 72 h.A significant increase in the value of redox potential occurs during Cr(Ⅵ)reduction and Cr(Ⅵ)reduction can be observed over a range of redox potential from+3 mV to+91 mV.Both of SO4 2-and NO3 -have no effect on Cr(Ⅵ)reduction.The presence of Zn 2+has a notable inhibitory effect on Cr(Ⅵ) reduction while Cu 2+ substantially stimulates Cr(Ⅵ)reduction.In the presence of Zn 2+ ,Cr(Ⅵ)decreases from 40 mg/L to only 26-27 mg/L,whereas Cr(Ⅵ)drops to 1-2 mg/L after 48 h in the presence of Cu2 +.展开更多
文摘Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting Cr(Ⅵ) reduction rate including carbon source type, pH, initial Cr(Ⅵ) concentration and amount of cells inoculum were thoroughly studied. Malate was found to yield maximum biotransformation, followed by succinate and glucose, with the reduction rate of 60.86%, 43.76% and 28.86% respectively. The optimum pH for Cr(Ⅵ) reduction was 7.0, with reduction efficiency of 61.71% being achieved. With the increase of initial Cr(Ⅵ) concentration, the rate of Cr(Ⅵ) reduction decreased. The reduction was inhibited strongly when the initial Cr(Ⅵ) concentration increased to 157 mg/L. As the amount of cells inoculum increased, the rate of Cr(Ⅵ) reduction also increased. The mechanism of Cr(Ⅵ) reduction and final products were also analysed. The results suggested that the soluble enzymes appear to be responsible for Cr(Ⅵ) reduction by Pseudomonas aeruginosa, and the reduced Cr(Ⅲ) was not precipitated in the form of Cr(OH) 3.
文摘Semiconductor photocatalytic technology is widely recognized as one of the most promising technologies to solve current energy and environmental crisis, due to its ability to make effective use of solar energy. In recent years, graphite carbon nitride(g-C3N4), a new type of non-metallic polymer semiconductor photocatalyst, has rapidly become the focus of intense research in the field of photocatalysis because of its suitable bandgap energy, unique structure, and excellent chemical stability. In order to improve its intrinsic shortages of small specific surface area, narrow visible light response range, high electron-hole pair recombination rate, and low photon quantum efficiency, a simple method was utilized to synthesize Br-doped g-C3N4(CN–Br X, X = 5, 10, 20, 30), where X is a percentage mole ratio of NH4 Br to melamine. Experimental results showed that Br atoms were doped into the g-C3N4 lattice by replacing the bonded N atoms in the form of C–N=C, while the derived material retained the original framework of g-C3N4. The interaction of Br element with the g-C3N4 skeleton not only broadened the visible-light response of g-C3N4 to 800 nm with an adjustable band gap, but also greatly promoted the separation efficiency of the photogenerated charge carrier and the surface area. The photocurrent intensity of bare CN and CN–Br X(X = 5, 10, 20, 30) catalysts is calculated to be 1.5, 2.0, 3.1, 6.5, and 1.9 μA, respectively. And their specific surface area is measured to be 9.086, 9.326, 15.137, 13.397, and 6.932 m2/g. As a result, this Br-doped g-C3N4 gives significantly enhanced photocatalytic reduction of Cr(VI), achieving a twice enhancement over g-C3N4, with high stability during prolonged photocatalytic operation compared to bare g-C3N4 under visible light irradiation. Furthermore, an underlying photocatalytic reduction mechanism was proposed based on control experiments using radical scavengers.
基金supported by the National Natural Science Foundation of China under Grant(No.51871078)Heilongjiang Science Foundation(No.E2018028)
文摘Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ).
基金Project(IRT0719)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProjects(2006BAD03A1704,2006BAD03A1706)supported by the National Science&Technology Pillar Program during the 11th Five-year Plan Period of China
文摘The experiments were conducted to evaluate the Cr(Ⅵ)resistance and reduction by Pseudomonas aeruginosa.After this bacterium tolerated 40 mg/L Cr(Ⅵ),the growth of cells was observed.The bacterial growth was obviously lower than the controls over 24 h and the binary cell fission was observed in cell morphology by scanning electron microscope.P.aeruginosa was found to be able to reduce Cr(Ⅵ)although Cr(Ⅵ)had toxic effects on the cells.The results demonstrate that Cr(Ⅵ)is reduced from 40 mg/L to about 18 mg/L in 72 h.The value of pH drops from 7.02 to around 5.65 after 72 h.A significant increase in the value of redox potential occurs during Cr(Ⅵ)reduction and Cr(Ⅵ)reduction can be observed over a range of redox potential from+3 mV to+91 mV.Both of SO4 2-and NO3 -have no effect on Cr(Ⅵ)reduction.The presence of Zn 2+has a notable inhibitory effect on Cr(Ⅵ) reduction while Cu 2+ substantially stimulates Cr(Ⅵ)reduction.In the presence of Zn 2+ ,Cr(Ⅵ)decreases from 40 mg/L to only 26-27 mg/L,whereas Cr(Ⅵ)drops to 1-2 mg/L after 48 h in the presence of Cu2 +.