期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CBAM-U-HRNet模型和Sentinel-2数据的棉花种植地块提取
被引量:
1
1
作者
靳宁
孙林
+3 位作者
张东彦
张选
李毅
姚宁
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第11期159-168,共10页
棉花是我国重要的经济作物和战略储备物资,及时、准确地获取棉花空间分布信息对于棉花产量预测、农业政策的制定与调整具有重要意义。针对高分辨率遥感影像获取难度大以及传统机器学习对特征信息利用不足的问题,本文以新疆南部地区图木...
棉花是我国重要的经济作物和战略储备物资,及时、准确地获取棉花空间分布信息对于棉花产量预测、农业政策的制定与调整具有重要意义。针对高分辨率遥感影像获取难度大以及传统机器学习对特征信息利用不足的问题,本文以新疆南部地区图木舒克市为目标区域,提出一种以U-HRNet为基本框架,融合CBAM注意力机制的CBAM-U-HRNet棉花种植地块提取模型。选择U-Net、HRNet和U-HRNet作为对比模型,评估CBAM-U-HRNet模型在Sentinel-2(10 m)和GF-2(1 m)2种空间分辨率数据集上的表现以及在棉花地块提取的优势。结果表明,基于Sentinel-2遥感影像的CBAM-U-HRNet组合模型对棉花地块的提取精度最优,mIoU和mPA分别达到92.78%和95.32%。与Sentinel-2数据集相比,空间分辨率更高的GF-2数据在HRNet、U-Net和U-HRNet网络上取得了更高的精度。对于两种不同空间分辨率的数据集,基于CBAM-U-HRNet模型的棉花地块提取精度较为接近,表明CBAM-U-HRNet模型能够减少由于数据集空间分辨率不同导致的错分。与随机森林算法相比,CBAM-U-HRNet模型对棉花地块提取的准确率更高。研究结果可以为干旱地区棉花识别与种植地块快速提取提供技术支撑。
展开更多
关键词
棉花
种植地块提取
注意力机制
CBAM-
u-hrnet
模型
Sentinel-2
下载PDF
职称材料
应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测技术研究
2
作者
宋家骏
刘桂雄
+1 位作者
黄家曦
张国才
《中国测试》
CAS
北大核心
2023年第9期37-45,共9页
伪造图像若被不当利用会带来严重负面影响,不同伪造图像生成方法导致伪造属性差异,使得研究统一图像伪造检测、定位方法具有很大挑战性。该文提出一种应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测方法,首先采用U-HRNet替代HiFi-Ne...
伪造图像若被不当利用会带来严重负面影响,不同伪造图像生成方法导致伪造属性差异,使得研究统一图像伪造检测、定位方法具有很大挑战性。该文提出一种应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测方法,首先采用U-HRNet替代HiFi-Net特征提取网络,其网络结构促进学习图像深层特征以获取更高级的语义信息,增加多个阶段、融合通道以改善高分辨率特征;其次引入SoftTripleLoss模块,学习无约束采样的伪造属性特征嵌入表示以改善特征嵌入分布,从而更好地区分细粒度伪造属性,进而提高细粒度伪造图像分类准确率。实验表明,使用上述技术构建的检测模型像素级别总体评价指标AUC、F1分别为0.9928、0.9760,较原文献模型提高0.0025、0.0082;图像级别总体评价指标细粒度属性分类准确率Acc达98.05%,较原文献模型提高1.23%。
展开更多
关键词
伪造图像
伪造属性分类
HiFi-Net
u-hrnet
SoftTripleLoss
下载PDF
职称材料
题名
基于CBAM-U-HRNet模型和Sentinel-2数据的棉花种植地块提取
被引量:
1
1
作者
靳宁
孙林
张东彦
张选
李毅
姚宁
机构
山西能源学院资源与环境工程系
安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心
西北农林科技大学机械与电子工程学院
新疆生产建设兵团第三师农业科学研究所
西北农林科技大学水利与建筑工程学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第11期159-168,共10页
基金
山西省基础研究计划自然科学研究面上项目(202203021221231)。
文摘
棉花是我国重要的经济作物和战略储备物资,及时、准确地获取棉花空间分布信息对于棉花产量预测、农业政策的制定与调整具有重要意义。针对高分辨率遥感影像获取难度大以及传统机器学习对特征信息利用不足的问题,本文以新疆南部地区图木舒克市为目标区域,提出一种以U-HRNet为基本框架,融合CBAM注意力机制的CBAM-U-HRNet棉花种植地块提取模型。选择U-Net、HRNet和U-HRNet作为对比模型,评估CBAM-U-HRNet模型在Sentinel-2(10 m)和GF-2(1 m)2种空间分辨率数据集上的表现以及在棉花地块提取的优势。结果表明,基于Sentinel-2遥感影像的CBAM-U-HRNet组合模型对棉花地块的提取精度最优,mIoU和mPA分别达到92.78%和95.32%。与Sentinel-2数据集相比,空间分辨率更高的GF-2数据在HRNet、U-Net和U-HRNet网络上取得了更高的精度。对于两种不同空间分辨率的数据集,基于CBAM-U-HRNet模型的棉花地块提取精度较为接近,表明CBAM-U-HRNet模型能够减少由于数据集空间分辨率不同导致的错分。与随机森林算法相比,CBAM-U-HRNet模型对棉花地块提取的准确率更高。研究结果可以为干旱地区棉花识别与种植地块快速提取提供技术支撑。
关键词
棉花
种植地块提取
注意力机制
CBAM-
u-hrnet
模型
Sentinel-2
Keywords
cotton
planting area classification
attention mechanism
CBAM U HRNet model
Sentinel 2
分类号
S127 [农业科学—农业基础科学]
下载PDF
职称材料
题名
应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测技术研究
2
作者
宋家骏
刘桂雄
黄家曦
张国才
机构
华南理工大学机械与汽车工程学院
出处
《中国测试》
CAS
北大核心
2023年第9期37-45,共9页
基金
广东省重点领域研发计划项目(2019B010154003)。
文摘
伪造图像若被不当利用会带来严重负面影响,不同伪造图像生成方法导致伪造属性差异,使得研究统一图像伪造检测、定位方法具有很大挑战性。该文提出一种应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测方法,首先采用U-HRNet替代HiFi-Net特征提取网络,其网络结构促进学习图像深层特征以获取更高级的语义信息,增加多个阶段、融合通道以改善高分辨率特征;其次引入SoftTripleLoss模块,学习无约束采样的伪造属性特征嵌入表示以改善特征嵌入分布,从而更好地区分细粒度伪造属性,进而提高细粒度伪造图像分类准确率。实验表明,使用上述技术构建的检测模型像素级别总体评价指标AUC、F1分别为0.9928、0.9760,较原文献模型提高0.0025、0.0082;图像级别总体评价指标细粒度属性分类准确率Acc达98.05%,较原文献模型提高1.23%。
关键词
伪造图像
伪造属性分类
HiFi-Net
u-hrnet
SoftTripleLoss
Keywords
forged image
forged attribute classification
HiFi-Net
u-hrnet
SoftTripleLoss
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CBAM-U-HRNet模型和Sentinel-2数据的棉花种植地块提取
靳宁
孙林
张东彦
张选
李毅
姚宁
《农业机械学报》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
2
应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测技术研究
宋家骏
刘桂雄
黄家曦
张国才
《中国测试》
CAS
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部