An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(A...An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.展开更多
Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy...Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.展开更多
A liquid metal reactor(LMR) loaded with a fuel compound of uranium and beryllium(U-Be alloy fuel),which was cooled by a lead-bismuth eutectic alloy(PbBi),has been applied in Russian Alfa-class nuclear submarines.Becau...A liquid metal reactor(LMR) loaded with a fuel compound of uranium and beryllium(U-Be alloy fuel),which was cooled by a lead-bismuth eutectic alloy(PbBi),has been applied in Russian Alfa-class nuclear submarines.Because of the large amount of beryllium in the core, the reaction between the beryllium atoms and neutrons could result in the accumulation of 3 He and 6 Li, which are called the "poisoned elements" owing to their large thermal neutron capture cross section. The accumulation of neutron absorber can affect the performance of a reactor. In this study, the Super Multi-functional Calculation Program(SuperMC) code, which was developed by Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences(INEST, CAS), was adopted to illustrate the influence of beryllium on an LMR.展开更多
Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as ...Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation occurs in a non-reactive predominant mechanism, as shown by the curves of hydrogen absorption/desorption as a function of time and temperature. Our focus was on the experimental results presented by the addition of 8% weight molybdenum. Following the production by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen for temperatures varying from 500°C to 600°C and for times of 0.5 to 4 h. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment during the thermal shock phase of the experiments. Also, it was observed that there was a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy.展开更多
In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their hig...In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their high efficiency as FC catalysts. However, their high cost holds back the FCs from application on a large scale. Therefore, catalysts that do not contain precious metals are sought. Studies are focused mainly on the search for fuel electrode catalysts, but for the efficiency of FCs also the oxygen electrode catalyst is of great significance. The paper presents an analysis of the possibilitiesof using Ni-Co alloy as a catalyst for the oxygen electrode of the FC.展开更多
As a potential candidate for generation IV reactors, lead-alloy cooled reactor has attracted much attentions in recent years. The China LEAd-based research Reactor(CLEAR) is proposed as the primary choice for the acce...As a potential candidate for generation IV reactors, lead-alloy cooled reactor has attracted much attentions in recent years. The China LEAd-based research Reactor(CLEAR) is proposed as the primary choice for the accelerator driven subcritical system project launched by Chinese Academy of Sciences. Lead-bismuth eutectic(LBE) is selected as the coolant of CLEAR owing to its efficient heat conductivity properties and high production rate of neutrons. In order to compensate the buoyancy due to the high density of lead-alloy, fixation methods of fuel assembly(FA) have become a research hotspot worldwide. In this paper, we report an integrated system of ballast and fuel element for CLEAR FA. It guarantees the correct positioning of each FA in normal and refueling operations. Force calculation and temperature analysis prove that the FA will be stable and safe under CLEAR operation conditions.展开更多
In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-...In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.展开更多
Nuclear fuel based on uranium metal alloys is utilized in research and test reactors. For the purpose of the reduction of fuel enrichment, high densities of uranium-235 in this kind of fuel are needed. This can be ach...Nuclear fuel based on uranium metal alloys is utilized in research and test reactors. For the purpose of the reduction of fuel enrichment, high densities of uranium-235 in this kind of fuel are needed. This can be achieved when uranium alloys are used containing elements such as Zr, Mo and Nb. The construction of fuel element with high-uranium density requires materials with low cross sections for neutron absorption, stability under irradiation and absence of the chemical interactions between the fuel and cladding elements. In case of U-Zr-Nb alloys, Zry (zircaloy) cladding is a better option due to the fact that they have a higher chemical compatibility when compared with the use of aluminum alloys. This study aims to develop plate type nuclear fuel using the U-2.5Zr-7.5Nb alloy dispersed in Zry. Powders of this uranium based alloy and Zry were obtained by hydriding-dehydriding process. These powders were homogenized, compacted in pellet that was sandwiched in plates and frame of Zry. This assembly was hot rolled forming the dispersion fuel miniplate.展开更多
The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is a...The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is applied to synthesize the high-quality PtTe alloy nanowires(PtTe NW)by using Te NW as an efficient sacrificial template.The existence of Te atoms separates the continuous Pt atoms,triggering a direct reaction pathway of formic acid electrooxidation reaction(FAEOR)at PtTe NW.The one-dimensional architecture and highly active sites have enabled PtTe NW to reveal outstanding electrocatalytic activity towards FAEOR with the mass/specific activities of 1091.25 mA mg^(-1)/45.34 A m^(-2)at 0.643 V potential,which are 44.72/23.16 and 20.26/11.75 times bigger than those of the commercial Pt and Pd nanoparticles,respectively.Density functional theory calculations reveal that Te atoms optimize the electronic structure of Pt atoms,which decreases the adsorption capacity of CO intermediate and simultaneously improves the durability of PtTe NW towards FAEOR.This work provides the valuable insights into the synthesis and design of efficient Pt-based alloy FAEOR electrocatalysts.展开更多
文摘An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.
文摘Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.
基金supported by the Natural Science Foundation of Anhui Province of China(No.1608085ME107)
文摘A liquid metal reactor(LMR) loaded with a fuel compound of uranium and beryllium(U-Be alloy fuel),which was cooled by a lead-bismuth eutectic alloy(PbBi),has been applied in Russian Alfa-class nuclear submarines.Because of the large amount of beryllium in the core, the reaction between the beryllium atoms and neutrons could result in the accumulation of 3 He and 6 Li, which are called the "poisoned elements" owing to their large thermal neutron capture cross section. The accumulation of neutron absorber can affect the performance of a reactor. In this study, the Super Multi-functional Calculation Program(SuperMC) code, which was developed by Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences(INEST, CAS), was adopted to illustrate the influence of beryllium on an LMR.
文摘Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation occurs in a non-reactive predominant mechanism, as shown by the curves of hydrogen absorption/desorption as a function of time and temperature. Our focus was on the experimental results presented by the addition of 8% weight molybdenum. Following the production by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen for temperatures varying from 500°C to 600°C and for times of 0.5 to 4 h. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment during the thermal shock phase of the experiments. Also, it was observed that there was a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy.
文摘In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their high efficiency as FC catalysts. However, their high cost holds back the FCs from application on a large scale. Therefore, catalysts that do not contain precious metals are sought. Studies are focused mainly on the search for fuel electrode catalysts, but for the efficiency of FCs also the oxygen electrode catalyst is of great significance. The paper presents an analysis of the possibilitiesof using Ni-Co alloy as a catalyst for the oxygen electrode of the FC.
基金Supported by the Strategic Priority Science&Technology Program of the Chinese Academy of Sciences(No.XDA03040000)
文摘As a potential candidate for generation IV reactors, lead-alloy cooled reactor has attracted much attentions in recent years. The China LEAd-based research Reactor(CLEAR) is proposed as the primary choice for the accelerator driven subcritical system project launched by Chinese Academy of Sciences. Lead-bismuth eutectic(LBE) is selected as the coolant of CLEAR owing to its efficient heat conductivity properties and high production rate of neutrons. In order to compensate the buoyancy due to the high density of lead-alloy, fixation methods of fuel assembly(FA) have become a research hotspot worldwide. In this paper, we report an integrated system of ballast and fuel element for CLEAR FA. It guarantees the correct positioning of each FA in normal and refueling operations. Force calculation and temperature analysis prove that the FA will be stable and safe under CLEAR operation conditions.
基金Ariel UniversityIsrael National Research Center for Electrochemical PropulsionNew Technologies Research Centre,University of West Bohemia,Pilsen for financially supporting this research。
文摘In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.
文摘Nuclear fuel based on uranium metal alloys is utilized in research and test reactors. For the purpose of the reduction of fuel enrichment, high densities of uranium-235 in this kind of fuel are needed. This can be achieved when uranium alloys are used containing elements such as Zr, Mo and Nb. The construction of fuel element with high-uranium density requires materials with low cross sections for neutron absorption, stability under irradiation and absence of the chemical interactions between the fuel and cladding elements. In case of U-Zr-Nb alloys, Zry (zircaloy) cladding is a better option due to the fact that they have a higher chemical compatibility when compared with the use of aluminum alloys. This study aims to develop plate type nuclear fuel using the U-2.5Zr-7.5Nb alloy dispersed in Zry. Powders of this uranium based alloy and Zry were obtained by hydriding-dehydriding process. These powders were homogenized, compacted in pellet that was sandwiched in plates and frame of Zry. This assembly was hot rolled forming the dispersion fuel miniplate.
基金supported by the National Natural Science Foundation of China(22272103 and 52171145)the Science and Technology Innovation Team of Shaanxi Province(2023-CX-TD27)+1 种基金the Fundamental Research Funds for the Central Universities(GK202202001)the 111 Project(B14041 and D20015)。
文摘The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is applied to synthesize the high-quality PtTe alloy nanowires(PtTe NW)by using Te NW as an efficient sacrificial template.The existence of Te atoms separates the continuous Pt atoms,triggering a direct reaction pathway of formic acid electrooxidation reaction(FAEOR)at PtTe NW.The one-dimensional architecture and highly active sites have enabled PtTe NW to reveal outstanding electrocatalytic activity towards FAEOR with the mass/specific activities of 1091.25 mA mg^(-1)/45.34 A m^(-2)at 0.643 V potential,which are 44.72/23.16 and 20.26/11.75 times bigger than those of the commercial Pt and Pd nanoparticles,respectively.Density functional theory calculations reveal that Te atoms optimize the electronic structure of Pt atoms,which decreases the adsorption capacity of CO intermediate and simultaneously improves the durability of PtTe NW towards FAEOR.This work provides the valuable insights into the synthesis and design of efficient Pt-based alloy FAEOR electrocatalysts.