期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on the LA-UMamba Model for Asymmetric Modules with Added Auxiliary Information
1
作者 YAN Jing SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期56-66,共11页
Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling cap... Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques. 展开更多
关键词 Medical image segmentation u-net Mamba module Deep Learning
下载PDF
融合卷积神经网络与Transformer的三维颈动脉超声图像斑块分割方法
2
作者 黄建华 李朝军 +1 位作者 沙蕾 林艳萍 《机电一体化》 2022年第4期71-78,共8页
超声检查是颈动脉粥样硬化诊断的重要手段,在三维颈动脉超声图像中准确分割颈动脉斑块是评估和检测斑块的基础。提出融合卷积神经网络与Transformer的U型网络模型(CTUNet)。提出轻量自注意力机制,并将自注意力机制引入模型编码器与解码... 超声检查是颈动脉粥样硬化诊断的重要手段,在三维颈动脉超声图像中准确分割颈动脉斑块是评估和检测斑块的基础。提出融合卷积神经网络与Transformer的U型网络模型(CTUNet)。提出轻量自注意力机制,并将自注意力机制引入模型编码器与解码器的不同层次中,以建模长距离依赖关系。在前馈网络中引入深度卷积,进一步提高建模局部上下文的能力。使用交叉注意力机制融合跳跃连接特征与解码器特征,恢复图像细节信息,提高图像分割质量。在自行构建的三维颈动脉超声图像数据集上验证模型,实验表明CTUNet的分割性能优于其他先进模型,有望在临床上评估和监测斑块。 展开更多
关键词 颈动脉斑块 三维超声 TRANSFORMER u-net图像分割
原文传递
基于递进式级联卷积神经网络的混凝土裂缝识别方法 被引量:7
3
作者 卢佳祁 姚志东 《工业建筑》 CSCD 北大核心 2021年第5期30-36,共7页
基于深度学习的卷积神经网络方法是目前图像裂缝识别鲁棒性较高的方法,主要分为滑动窗口法和图像分割法。滑动窗口法存在后期阈值分割裂缝精度不高的问题;全局图像分割法存在裂缝区域数据和背景区域数据严重不均衡问题,会对裂缝分割精... 基于深度学习的卷积神经网络方法是目前图像裂缝识别鲁棒性较高的方法,主要分为滑动窗口法和图像分割法。滑动窗口法存在后期阈值分割裂缝精度不高的问题;全局图像分割法存在裂缝区域数据和背景区域数据严重不均衡问题,会对裂缝分割精度产生影响。采用了基于递进式级联卷积神经网络的方法对混凝土表面裂缝进行识别:首先采用全卷积神经网络一次性判断图像中所有密集重叠窗口区域内是否含有裂缝,然后将含有裂缝的窗口区块提取出来作为感兴趣区域,再基于轻量化的U-Net图像分割网络作用于感兴趣区域,将裂缝区域精确地提取出来。试验结果表明,所提出的基于递进式级联卷积神经网路的裂缝识别方法优于直接使用滑动窗口法和全局图像分割法,有着可靠的应用前景。 展开更多
关键词 裂缝识别 递进式级联卷积神经网络 全卷积神经网络 感兴趣区域 u-net图像分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部