期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
LA-ICP-MS U-Pb Geochronology of Detrital Zircons in Eastern Liaoning Province: An Early Paleozoic Formation Associated with the Gondwana Supercontinent Event 被引量:2
1
作者 DONG Xiaojie LIU Zhenghong +2 位作者 XU Zhongyuan LIU Yongjun LIU Jiexun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第3期1262-1264,共3页
Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt ... Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its 展开更多
关键词 LA-ICP-MS u-pb geochronology of detrital zircons Eastern Liaoning Province the Gondwana Supercontinent Event
下载PDF
Detrital Zircon U-Pb Geochronology: New Insight into the Provenance of Sanya Formation in the Yinggehai Basin 被引量:2
2
作者 WANG Ce LIANG Xinquan +2 位作者 FU Jiangang JIANG Ying DONG Chaoge 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第1期386-387,共2页
Objective The NNW-SSE trending Yinggehai Basin, located on the continental shelf at water depths of 50-200 m in the northwestern South China Sea, is a Cenozoic conversion extensional basin. Over the past decades, a n... Objective The NNW-SSE trending Yinggehai Basin, located on the continental shelf at water depths of 50-200 m in the northwestern South China Sea, is a Cenozoic conversion extensional basin. Over the past decades, a number of hydrocarbon reservoirs have been discovered in the deepwater area of the basin, including the Lingtou Formation (Eocene), Yacheng and Lingshui formations (Oligocene), Sanya, Meishan and Huangliu formations (Miocene) and Yinggehai Formation (Pliocene), which are covered by Quaternary sediments and underlain by pre- Paleogene strata. 展开更多
关键词 PB detrital zircon u-pb geochronology
下载PDF
Detrital Zircon U-Pb Geochronology and Provenance of the Hebukesaier Formation in the Shaerbuerti Mountains,Northern West Junggar:Implication for Devonian Subduction of the Junggar–Balkhash Ocean 被引量:2
3
作者 LIANG Hao CHEN Jiafu +2 位作者 MA Xu YANG Hongzhang XIN Mingyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1410-1427,共18页
Limited Devonian magmatic record in northern West Junggar leads to contrasting models on its tectonic evolution.In this study,we conducted LA-ICP-MS U-Pb dating on detrital zircons of two sandstones from the Hebukesai... Limited Devonian magmatic record in northern West Junggar leads to contrasting models on its tectonic evolution.In this study,we conducted LA-ICP-MS U-Pb dating on detrital zircons of two sandstones from the Hebukesaier Formation in the Shaerbuerti Mountains.Detrital zircons with oscillatory zoning are characterized by high Th/U(>0.3)and low La/Yb(<0.15),indicating their magmatic origin.The youngest zircon ages of two samples are 402±2 Ma and 406±2 Ma,respectively,suggesting that the Hebukesaier Formation was deposited at the Early Devonian.Detrital zircon age patterns show single peaks(at ca.424 Ma,n=157),which indicates that these clastics were likely proximal accumulation after short distance transportation.Provenance of the Hebukesaier Formation was the Xiemisitai and Shaerbuerti Mountains.Detrital zircon ages range from 481 Ma to 395 Ma,which indicates that there was relatively continuous Early Paleozoic magmatism in the Xiemisitai and Shaerbuerti Mountains since the Early Ordovician.Age spectrums of sampled detrital zircons are distinct from those of Lower Devonian strata either in southern West Junggar or in East Junggar,which implies for individual tectonic evolution of northern West Junggar.We favor that Lower Devonian Hebukesaier Formation was developed in a fore–arc setting due to the northward subduction of the Junggar–Balkhash Ocean. 展开更多
关键词 geochronology detrital zircon FORE-ARC DEVONIAN West Junggar
下载PDF
LA-ICP-MS U-Pb Geochronology of Detrital Zircon in the Guanzhong Basin, China and Its Tectonic Response 被引量:1
4
作者 DONG Min WANG Zongxiu +2 位作者 DONG Hui MA Licheng ZHANG Linyan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第3期1257-1261,共5页
Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some... Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved. 展开更多
关键词 LA-ICP-MS u-pb geochronology of detrital zircon Guanzhong Basin
下载PDF
Detrital Zircon U-Pb Geochronology of the Xilin Group: Constraints for the Early Paleozoic Tectonic Evolution of the Songliao Massif 被引量:1
5
作者 SANG Tianjiao PEI Fuping +4 位作者 XU Wenliang WANG Zhiwei JIAO Ji WEI Jingyang WANG Yipeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期2063-2074,共12页
The Xilin Group, composed of the Chenming, Laodaomiaogou, Qianshan and Wuxingzhen formations, is one of the Early Paleozoic terranes in the eastern Songliao Massif, mainly consisting of thick layers of fine clastic an... The Xilin Group, composed of the Chenming, Laodaomiaogou, Qianshan and Wuxingzhen formations, is one of the Early Paleozoic terranes in the eastern Songliao Massif, mainly consisting of thick layers of fine clastic and carbonate rocks. This study presents LA-ICP-MS zircon U-Pb geochronological data for the Laodaomiaogou and Qianshan formations, further constraining their provenance and the Early Paleozoic tectonic evolution of the Songliao Massif on the eastern Central Asian Orogenic Belt. Most zircons from the Laodaomiaogou and Qianshan formations show magmatic oscillatory zoning and high Th/U ratios(0.26–2.41). Zircon U-Pb dating results indicate that the detrital zircons from the silty mudstone of the Laodaomiaogou Formation yield peak ages of 634 Ma, 775 Ma, 820 Ma, 880 Ma and 927 Ma, as well as multi-episodic Archean to Paleoproterozoic and Mesoproterozoic ages(1405–643 Ma), implying its deposition time is younger than ~634 Ma. Furthermore, the occurrence of Early Cambrian fossils indicates that the Laodaomiaogou Formation was deposited during the late stage of the Early Cambrian(~514 Ma). The zircons from the K-bentonite of the Qianshan Formation show four peak ages of 444 Ma, 471 Ma, 489 Ma and 518 Ma and the youngest age peak of 444 ± 4 Ma(n = 6) indicates that the Qianshan Formation was deposited during the Late Ordovician. In addition, the peak ages of the detrital zircons in the silty mudstone of the Qianshan Formation are 472 Ma and 498 Ma, as well as two other concordant points with;Pb/;Pb apparent ages of 1824 Ma and 1985 Ma. The dating results in this study, together with published data, indicate the absence of Pan-African magmatic events in the Songliao Massif prior to the initial deposition of the Xilin Group, in contrast to those distributed widely in the Jiamusi Massif. Taken together, we conclude that the depositional provenance of the Laodaomiaogou and Qianshan formations was derived from the Songliao Massif. Furthermore, the characteristics of the detrital zircon age composition and rock associations indicate that the Laodaomiaogou Formation formed in a passive continental margin environment, in contrast to the Qianshan Formation, which formed in an active continental margin environment. The above results also imply that the Songliao and Jiamusi massifs might not have collided before the Late Ordovician. 展开更多
关键词 zircon u-pb geochronology tectonic implications Early Paleozoic Xilin Group Songliao Massif
下载PDF
Zircon U-Pb geochronology,geochemistry and tectonic implication of volcanic rocks from Manketouebo Formation in Keyihe area of northern Great Xing'an Range
6
作者 JIA Jinfeng WANG Yang LI Pengchuan 《Global Geology》 2023年第3期133-145,共13页
Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain th... Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean. 展开更多
关键词 Manketouebo Formation zircon u-pb geochronology GEOCHEMISTRY Great Xing’an Range
下载PDF
Detrital-zircon geochronology of the Jurassic coal-bearing strata in the western Ordos Basin, North China: Evidences for multi-cycle sedimentation 被引量:8
7
作者 Pei Guo Chiyang Liu +3 位作者 Jianqiang Wang Yu Deng Guangzhou Mao Wenqing Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1725-1743,共19页
The western Ordos Basin(WOB), situated in a tectonic transition zone in the North China Craton, acts as an excellent example for studying the Mesozoic intraplate sedimentation and deformation in Asia. In this study, U... The western Ordos Basin(WOB), situated in a tectonic transition zone in the North China Craton, acts as an excellent example for studying the Mesozoic intraplate sedimentation and deformation in Asia. In this study, U-Pb ages for 1203 detrital zircons of 14 sandstone samples collected from 11 sections are presented to unravel the sediment source locations and paleogeographic environments of the Early-Middle Jurassic coal-bearing Yan'an Formation in the WOB. Data show that there are five prominent age groups in the detrital zircons of the Yan'an Formation, peaking at ca. 282 Ma, 426 Ma, 924 Ma, 1847 Ma, and2468 Ma. Samples from the northern, middle, and southern parts of the WOB contain these five age categories in various proportions. In the northern region, the Yan'an Formation exclusively contains Early Permian detrital zircons with a single age group peaking at 282 Ma, matching well with the crystallizing ages of the widespread Early Permian granites in the Yinshan Belt to the north and the Alxa Block to the northwest. While in the southern region, the Yan'an Formation mainly contains three groups of detrital zircons, with age peaks at 213 Ma, 426 Ma, and 924 Ma. These zircon ages resemble those of the igneous rocks in the Qilian-Qinling Orogenic Belt to the south-southwest. Samples in the middle region, characterized by a mixture age spectrum with peaks at 282 Ma, 426 Ma, 924 Ma, 1847 Ma and 2468 Ma, are previously thought to have mixed derivations from surrounding ranges. However, by referring to the detrital-zircon age compositions of the pre-Jurassic sedimentary successions and combining with paleontological and petrographic analysis, we firstly propose that the sediments of the Yan'an Formation in the middle region were partly recycled from the Triassic and Paleozoic sedimentary strata in the WOB.The occurrence of recycled sedimentation suggests that the Late Triassic-Early Jurassic intraplate compressional deformation was very intense in the WOB, especially for regions in front of the Qilian Orogenic Belt. 展开更多
关键词 Western ORDOS Basin Yan’an Formation u-pb geochronology Recycled zircon INTRAPLATE deformation
下载PDF
Detrital zircon geochronology of the Lutzow-Holm Complex,East Antarctica:Implications for Antarctica-Sri Lanka correlation 被引量:6
8
作者 Yusuke Takamura Toshiaki Tsunogae +1 位作者 M.Santosh Yukiyasu Tsutsumi 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第2期355-375,共21页
The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through t... The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through the latest Neoproterozoic collisional events during the assembly of Gondwana supercontinent. Here, we report new geochronological data on detrital zircons in metasediments associated with the magmatic rocks from the LHC, and compare the age spectra with those in the adjacent terranes for evaluating the tectonic correlation of East Antarctica and Sri Lanka. Cores of detrital zircon grains with high Th/U ratio in eight metasediment samples can be subdivided into two dominant groups:(1) late Meso-to Neoproterozoic(1.1-0.63 Ga) zircons from the northeastern part of the LHC in Prince Olav Coast and northern Soya Coast areas, and(2) dominantly Neoarchean to Paleoproterozoic(2.8-2.4 Ga) zircons from the southwestern part of the LHC in southern Lutzow-Holm Bay area. The ca.1.0 Ga and ca. 2.5 Ga magmatic suites in the LHC could be proximal provenances of the detrital zircons in the northeastern and southwestern LHC, respectively. Subordinate middle to late Mesoproterozoic(1.3-1.2 Ga) detrital zircons obtained from Akarui Point and Langhovde could have been derived from adjacent Gondwana fragments(e.g., Rayner Complex, Eastern Ghats Belt). Meso-to Neoproterozoic domains such as Vijayan and Wanni Complexes of Sri Lanka, the southern Madurai Block of southern India, and the central-western Madagascar could be alternative distal sources of the late Meso-to Neoproterozoic zircons. Paleo-to Mesoarchean domains in India, Africa, and Antarctica might also be distal sources for the minor ~2.8 Ga detrital zircons from Skallevikshalsen. The detrital zircons from the Highland Complex of Sri Lanka show similar Neoarchean to Paleoproterozoic(ca. 2.5 Ga) and Neoproterozoic(ca. 1.0 Ga) ages, which are comparable with those of the LHC, suggesting that the two complexes might have formed under similar tectonic regimes. We consider that the Highland Complex and metasedimentary unit of the LHC formed a unified latest Neoproterozoic suture zone with a large block of northern LH-Vijayan Complex caught up as remnant of the ca. 1.0 Ga magmatic arc. 展开更多
关键词 The northern Lützow-Holm-Vijayan Complex zircon u-pb geochronology Crustal evolution Tectonic correlations Gondwana supercontinent
下载PDF
Provenance and paleogeography of Carboniferous-Permian strata in the Bayanhot Basin:Constraints from sedimentary records and detrital zircon geochronology 被引量:2
9
作者 Junfeng Zhao Yijun Zhou +5 位作者 KeWang Xuan Li Zhanrong Ma Zhengzhong Ruan DongWang Rui Xue 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期113-131,共19页
The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements;it is in the eastern Alxa Block,adjacent to the North China Craton(NCC)and the North Qilian Orogenic Belt(NQOB).There are ... The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements;it is in the eastern Alxa Block,adjacent to the North China Craton(NCC)and the North Qilian Orogenic Belt(NQOB).There are well-developed Paleozoic-Cenozoic strata in this basin,and these provide a crucial window to a greater understanding of the amalgamation process and source-to-sink relationships between the Alxa Block and surrounding tectonic units.However,due to intensive post-depositional modification,and lack of subsurface data,several fundamental issues-including the distribution and evolution of the depositional systems,provenance supplies and source-to-sink relationships during the Carboniferous-Permian remain unclear and thus hinder hydrocarbon exploration and limit the geological understanding of this basin.Employing integrated outcrop surveys,new drilling data,and detrital zircon dating,this study examines the paleogeographic distribution and evolution,and provenance characteristics of the Carboniferous-Permian strata in the Bayanhot Basin.Our results show that the Bayanhot Basin experienced a long-term depositional evolution process from transgression to retrogression during the Carboniferous-late Permian.The transgression extent could reach the central basin in the early Carboniferous.The maximum regional transgression occurred in the early Permian and might connect the Qilian and North China seas with each other.Subsequently,a gradual regression followed until the end of the Permian.The northwestern NCC appeared as a paleo-uplift area and served as a sediments provenance area for the Alxa Block at that time.The NCC,Bayanwula Mountain,and NQOB jointly served as major provenances during the Carboniferous-Permian.There was no ocean separation,nor was there an orogenic belt between the Alxa Block and the NCC that provided sediments for both sides during the Carboniferous-Permian.The accretion of the Alxa and North China blocks should have been completed before the Carboniferous period. 展开更多
关键词 CARBONIFEROUS-PERMIAN detrital zircon geochronology PALEOGEOGRAPHY Bayanhot Basin Alxa Block North China Craton
下载PDF
Detrital zircon geochronology of quartzites from the southern Madurai Block,India:Implications for Gondwana reconstruction 被引量:3
10
作者 Shan-Shan Li M.Santosh +2 位作者 G.Indu E.Shaji T.Tsunogae 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第4期851-867,共17页
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions.Southern Peninsular India constituted the central segment of th... Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions.Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic-Cambrian.Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madura) Block.Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons,among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic(ca.2980-1670 Ma,with peaks at 2900-2800 Ma,2700-2600 Ma,2500-2300 Ma,2100-2000 Ma).Zircons in two samples show magmatic zircons with dominantly Neoproterozoic(950-550 Ma) ages.The metamorphic zircons from the quartzites define ages in the range of 580-500 Ma,correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly.The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment,positive Ce,Sm anomalies and negative Eu,Pr,Nd anomalies.The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages.Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses,the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment.Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block.Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south,with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure,part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic-Cambrian. 展开更多
关键词 u-pb geochronology detrital zircon Southern Madurai Block Gondwana supercontinent
下载PDF
Detrital zircon geochronology and provenance of sediments within the Mesozoic basins:New insights into tectonic evolution of the Qinling Orogen
11
作者 Anqi Wang Debin Yang +4 位作者 Haotian Yang Maosong Mu Yikang Quan Leran Hao Wenliang Xu 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期343-357,共15页
Mesozoic sedimentary units within the Nanzhao and Mashiping basins record the paleogeographic and tectonic evolution of the Qinling Orogen(QO).This study uses new detrital zircon U-Pb ages and Hf isotopic data to cons... Mesozoic sedimentary units within the Nanzhao and Mashiping basins record the paleogeographic and tectonic evolution of the Qinling Orogen(QO).This study uses new detrital zircon U-Pb ages and Hf isotopic data to constrain the timing of deposition and provenance of the Taishanmiao,Taizishan,Nanzhao,and Mashiping formations of the North Qinling Orogen(NQO).The detrital zircons can be split by age peaks into five major groups,including Early Cretaceous,Late Triassic,Early Paleozoic,Neoproterozoic and Paleoproterozoic age peaks.On the basis of the youngest zircon ages and age-diagnostic fossils,we conclude that the Taishanmiao(youngest age of 234 Ma)and Taizishan(216 Ma)formations were deposited during the Late Triassic,whereas the Nanzhao Formation(110 Ma)was deposited during the Early Cretaceous rather than the Late Jurassic as previously thought.The Mashiping Formation(110 Ma)was also deposited during the Early Cretaceous.Combined with zircon Hf isotopic compositions,zircons from Late Triassic units were generally derived from the NQO,South Qinling Orogen(SQO),and North China Craton(NCC),with minor amounts derived from the Xing-Meng Orogenic Belt.The sediments within the Nanzhao Formation were mainly derived from the QO,with a minor contribution from the NCC.The Early Cretaceous conglomerates of the Mashiping Formation were generally derived from recycled earlier detritus.This implies that Late Triassic deposition was related to the final closure of the Mianlue Ocean,whereas Early Cretaceous deposition was correlated to the continued intercontinental subduction of the Yangtze Craton beneath the QO.The change in provenance within these Mesozoic sediments suggests the QO underwent two periods of significant uplift,which was a process generated sediments that were deposited in a series of basins of this area. 展开更多
关键词 detrital zircons u-pb dating Hf isotopes MESOZOIC Qinling Orogen
下载PDF
Provenance of the Southeastern South China Block in the Late Triassic and Initiation of Paleo-Pacific Subduction:Evidence from Detrital Zircon U-Pb Geochronology
12
作者 Jintao Kong Zhongjie Xu +1 位作者 Rihui Cheng Duo Wan 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1426-1446,共21页
During the Late Paleozoic-Early Mesozoic Era,the sediment transport system and tectonic regime in the southeastern margin of the South China Block(SESCB)all changed,significantly affected by the Paleo-Pacific subducti... During the Late Paleozoic-Early Mesozoic Era,the sediment transport system and tectonic regime in the southeastern margin of the South China Block(SESCB)all changed,significantly affected by the Paleo-Pacific subduction.However,controversy exists about the Paleo-Pacific subduction's initiation time.This study uses detrital zircon U-Pb ages to discuss the Late Triassic source-tosink system in the SESCB.It provides some references for the Paleo-Pacific subduction process based on crucial age information and zircons'trace elements.The paleogeography and similarity of detrital zircon age distribution indicate that three sinks were found in the SESCB during the Late Triassic:1.the Yangchun-Kaiping-Gaoming area,comprising major age ranges of 260-220,460-400,and 1200-800 Ma,which might be sourced from the Yunkai terrane;2.the Jiexi-Kanshi-Nanjing area,characterized by the significant age component of 2000-1800 Ma,which corresponded to the Wuyi terrane;3.the Xinan area,consisting of significant age groups of 290-250 and 380-320 Ma,which might be sourced from the magmatic rocks formed by the Huinan Movement and Paleo-Pacific subduction.Note that 290-250 Ma zircons were widely distributed in the Upper Triassic strata,and their trace elements suggested the existence of a magmatic arc near the SESCB during the 290-250 Ma.Thus,we propose that the Paleo-Pacific subduction might have begun in the Early Permian. 展开更多
关键词 detrital zircon geochronology South China Block Paleo-Pacific Block provenance analysis geochronology geochemistry
原文传递
Late Mesoproterozoic to Early Neoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Evidence from U-Pb Geochronology and Lu-Hf Isotopes of Detrital Zircons from Sedimentary Rocks
13
作者 Peiwen Liu Xiaozhong Ding +1 位作者 Yanxue Liu Jibiao Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期812-827,共16页
In situ zircon U-Pb geochronological and Lu-Hf isotope studies of detrital zircons from Late Mesoproterozoic to Early Neoproterozoic sedimentary units on the southwestern margin of the Yangtze Block have important imp... In situ zircon U-Pb geochronological and Lu-Hf isotope studies of detrital zircons from Late Mesoproterozoic to Early Neoproterozoic sedimentary units on the southwestern margin of the Yangtze Block have important implications for the tectonic evolution of the Yangtze Block.The Huili Group contains zircons whose ages are mainly Late Archean to Mesoproterozoic(2650-2450,2100-1800,and 1350-1150 Ma).The Dengxiangying Group has one major age population of 1900-1600 Ma,and two subordinate age populations of 1350-1100 and 2300-2000 Ma.Yanbian Group sedimentary rocks have a zircon age population mainly in the range of 970-850 Ma,contemporaneous with the ages of widespread arc-related magmatism in the western Yangtze Block.Combining these results with previous work,the Huili and Dengxiangying groups were most likely deposited during ca.1160 to 1000 Ma in an intra-continental rift basin setting,while the Yanbian Group accumulated during>920 to 782 Ma in a back-arc basin setting at the southwestern margin of the Yangtze Block.In addition,all these results further suggest a tectonic transition from a continental rift basin to a convergent environment at the southwestern margin of the Yangtze Block at 1000-970 Ma. 展开更多
关键词 Late Mesoproterozoic Early Neoproterozoic zircon u-pb age Lu-Hf isotope southwestern Yangtze Block geochronology
原文传递
Detrital Zircon Records of the Banxi Group in the Western Jiangnan Orogen:Implications for Crustal Evolution of the South China Craton 被引量:3
14
作者 ZHOU Weijian HUANG Dezhi +6 位作者 YU Zhiqiang MSANTOSH CAO Yusen ZHANG Jiandong LIU Lei CUI Jianjun LI Jianyuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期35-54,共20页
The Neoproterozoic evolution of the Jiangnan Orogen is important for understanding the tectonic history of South China.As a volcanic-sedimentary sequence developed in the Nanhua rift,the Banxi Group preserves the reco... The Neoproterozoic evolution of the Jiangnan Orogen is important for understanding the tectonic history of South China.As a volcanic-sedimentary sequence developed in the Nanhua rift,the Banxi Group preserves the records of important magmatic and tectonic events linked to the assembly and breakup of the Rodinia supercontinent.In this study,we report the results from whole-rock major-and trace-element concentrations,with zircon LA-(MC)-ICP-MS U-Pb ages,trace elements and Lu-Hf isotopic compositions of sandstones from the Banxi Group.The rocks are characterized by high SiO_(2)(65.88%–82.76%,with an average of 75.50%)contents,moderate(Fe_(2)O_(3)^(T)+MgO)(1.81%–7.78%,mean:3.79%)and TiO_(2)(0.39%–0.54%,mean:0.48%),low K_(2)O/Na_(2)O(0.03–0.40,mean:0.10)ratios and low Al_2O_(3)/SiO_(2)(0.11–0.24,mean:0.15)ratios.The sandstones have highΣREE contents(mean:179.1 ppm),with chondrite-normalized REE patterns similar to the upper crust and PAAS,showing enriched LREE((La/Yb)_N mean:14.85),sub-horizontal HREE curves and mild Eu(Eu/Eu^(*):0.75–0.89,mean:0.81)negative anomalies.Their geochemical characteristics resemble those of passive continental margin sandstones.Most of the zircons are magmatic in origin and yield a U-Pb age distribution with three peaks:a major age peak at 805 Ma and two subordinate age peaks at 1990 Ma and 2470 Ma,implying three major magmatic sources.The Neoproterozoic zircons haveε_(Hf)(t)values ranging from-47.4 to 12.4(mostly-20 to 0),suggesting a mixture of some juvenile arc-derived material and middle Paleoproterozoic heterogeneous crustal sources.The Hf model ages of middle Paleoproterozoic zircons(~1990 Ma)with negativeε_(Hf)(t)values(-12.65 to-6.21,Ave.=-9.8)concentrated around the Meso-Paleoarchean(mean T_(DM)^(C)=3.3–3.1 Ga).For late Neoarchean detrital zircons(~2470 Ma),ε_(Hf)(t)values are divided into two groups,one with negative values(-9.16 to-0.6)with model ages of 3.5–2.9 Ga,the other featuring positive values(1.0 to 3.9)with model ages of 2.9–2.7 Ga,recording a crustal growth event at~2.5 Ga.Neoproterozoic zircons show volcanic arc affinities with partly intraplate magmatic features.We propose that the Banxi Group formed in a rift basin within a passive continental margin setting,which derived detritus from felsic to intermediate rocks from the Yangtze Block and a small amount of arc volcanic rocks.The middle Paleoproterozoic detrital zircon data suggest Columbia-aged basement lies beneath the western Jiangnan orogen. 展开更多
关键词 detrital zircon u-pb age Lu-Hf isotope episodic magmatism Jiangnan Orogen
下载PDF
Paleozoic tectonic evolution of the proto-Korean Peninsula along the East Asian continental margin from detrital zircon U-Pb geochronology and Hf isotope geochemistry
15
作者 Yirang Jang Sung Won Kim +4 位作者 Vinod O.Samuel Sanghoon Kwon Seung-Ik Park M.Santosh Keewook Yi 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第1期97-117,共21页
Detrital zircon geochronology and Hf isotope analysis can be used for inferring provenance characteristics,and to evaluate the tectonic evolution of sedimentary basins and their link with regional orogenesis.The Paleo... Detrital zircon geochronology and Hf isotope analysis can be used for inferring provenance characteristics,and to evaluate the tectonic evolution of sedimentary basins and their link with regional orogenesis.The Paleozoic sequences of the Okcheon Belt consist of the Lower Paleozoic Joseon and the Upper Paleozoic Pyeongan supergroups with Middle Paleozoic hiatus locally on top of the Neoproterozoic bimodal volcanic rocks,reflecting an intracontinental rift setting between the two basements(viz.Gyeonggi and Yeongnam massifs)at southern part of the Korean Peninsula.Our detrital zircon U-Pb ages and Lu-Hf isotope results show that all these Paleozoic strata commonly have Paleoproterozoic and Paleozoic zircon ages with rare Meso-to Neoproterozoic ages.The individual zircon populations display following features,allowing estimation of their sedimentary provenances:(i)The Paleoproterozoic zircons(ca.1.85 Ga and 2.50 Ga)with similar ranges ofεHf(t)values are most common in the basement rocks of the Korean Peninsula,and were sourced from both the Gyeonggi and Yeongnam massifs.(ii)The Meso-to Neoproterozoic zircons,preserved only in the Middle to Late Cambrian clastic sedimentary rocks within the carbonate sequences probably reflect proximal provenance.(iii)The youngest Paleozoic zircons of each formation,almost coincident with their deposition ages,suggest presence of syndepositional magmatism,indicating proximal magmatic sources during their deposition.(iv)The Cambrian-Ordovician zircons,from the Lower Paleozoic sequences,but rare in the successive Upper Paleozoic sequences,suggest a provenance change after the hiatus between the two sedimentary successions.(v)The Permian zircons showing differentεHf(t)values indicate that detrital sources were varied at that time.The integrated results in our study suggest provenance variability linked to diverse tectonic environments,reflecting prolonged subduction-related crustal evolution of the proto-Korean Peninsula during the Paleozoic. 展开更多
关键词 detrital zircon u-pb and Hf isotopes Paleozoic metasedimentary rocks Okcheon Belt Taebaeksan zone Korean Peninsula
原文传递
Paleo-to Mesoproterozoic Tectono-Magmatic Events Recorded in the Huwan Complex from the Dabie Orogen,Central China:Evidence from Petrology and U-Pb Geochronology 被引量:1
16
作者 ZHU Jiang CHEN Yuqiong +4 位作者 CHEN Chao LI Zhanke SHI Xianbin CHEN Song ZOU Yuanbing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1150-1162,共13页
To better understand the Paleo-to Mesoproterozoic tectonic evolution of the Dabie Orogen in the northern margin of Yangtze Block,we present geochronological data for metasedimentary and metavolcanic rocks in the Huwan... To better understand the Paleo-to Mesoproterozoic tectonic evolution of the Dabie Orogen in the northern margin of Yangtze Block,we present geochronological data for metasedimentary and metavolcanic rocks in the Huwan complex.A total of 385 detrital zircon LA-ICP-MS analyses for metasedimentary rocks yielded three^(207)Pb/^(206)Pb age populations:1.50-1.80 Ga,1.81-1.87 Ga and 1.93-2.0 Ga,providing a maximum depositional timing of ca.1.50 Ga;while metafelsic volcanic gneisses yielded protolith U-Pb ages of 1893±54 Ma.The peak ages are remarkably consistent with the tectonothermal events that occurred in the northern Yangtze Block,indicating the presence of Paleo-to Mesoproterozoic magmatism in the Dabie Orogen.The age range of 1.93-2.0 Ga correlates with the Paleoproterozoic collision;the age range of 1.81-1.87 Ga coincides with the period of the post-orogenic extension;and the age range of 1.50-1.80 Ga is interpreted to associate with an extensional regime.Zircon cores with age of 1732-1965 Ma haveε_(Hf)(t)values ranging from-11.70 to-2.47,indicating that juvenile crust involved in their magma sources.Owing to the similar age spectra,we proposed that the nucleus of the Dabie Orogen was close to the Yangtze Block since the Paleoproterozoic.The Huwan complex has an intimate affiliation to the Yangtze Block,and implies multiple orogenic cycles.It was not only experienced the Paleo-Tethys ocean subduction and collision,but also recorded Paleo-to Mesoproterozoic tectono-magmatic events in the Dabie Orogen. 展开更多
关键词 geochronology detrital zircon Huwan complex PRECAMBRIAN Yangtze block
下载PDF
Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology 被引量:38
17
作者 Christopher J.Spencer Christopher L.Kirkland Richard J.M.Taylor 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第4期581-589,共9页
Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablati... Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent. 展开更多
关键词 zircon geochronology u-pb GEOSTATISTICS MSWD
下载PDF
Proto-Tethys ophiolitic mélange in SW Yunnan: Constraints from zircon U-Pb geochronology and geochemistry 被引量:11
18
作者 Guichun Liu Zaibo Sun +7 位作者 Jianwei Zi M.Santosh Tianyu Zhao Qinglai Feng Guangyan Chen Xiaomei Nie Jing Li Shitao Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期281-297,共17页
An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic m&#... An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic mélanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate)gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe)yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)N=0.69-1.87,(La/Yb)N=0.66-4.72.These,along with their predominantly positive wholerock eNd(t)and zircon eHf(t)values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock eNd(t)and positive to negative zircon eHf(t)values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic mélange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian. 展开更多
关键词 Mayidui-Wanhe ophiolites zircon u-pb geochronology GEOCHEMISTRY Proto-Tethys SW Yunnan
下载PDF
U-Pb Age and Hf Isotope Study of Detrital Zircons from the Wanzi Supracrustals:Constraints on the Tectonic Setting and Evolution of the Fuping Complex,Trans-North China Orogen 被引量:12
19
作者 Xiaoping XIA Min SUN +5 位作者 Guochun ZHAO WU Fuyuan XU Ping Jian ZHANG Yanhong HE ZHANG Jiheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第6期844-863,共20页
Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of v... Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block. 展开更多
关键词 detrital zircons u-pb age and Hf isotope Fuping Complex North China Craton
下载PDF
LA-ICP-MS Zircon U-Pb Geochronology of the Fine-grained Granite and Molybdenite Re-Os Dating in the Wurinitu Molybdenum Deposit,Inner Mongolia,China 被引量:10
20
作者 Cui LIU Jinfu DENG +4 位作者 Weiqiong KONG Liquan XU Guochun ZHAO Zhaohua LUO Ning LI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1057-1066,共10页
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite... The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea. 展开更多
关键词 fine-grained granite LA-ICP-MS zircon u-pb geochronology molybdenite Re-Os dating Wurinitu molybdenum deposit Inner Mongolia
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部