A new kind of hot sand cooling equipment with vertical spouted-fluidized bed is developed in this paper. It is similar to the traditional horizontal vibrating fluidized boiling cooler in principle but different from i...A new kind of hot sand cooling equipment with vertical spouted-fluidized bed is developed in this paper. It is similar to the traditional horizontal vibrating fluidized boiling cooler in principle but different from it in structure. The processing principle of the cooler is analyzed. The influence of main structural and processing parameters on the cooling effect and its mechanism are researched. Other characteristics of the cooler are discussed also. Experiment results show that the cooling efficiency η is equal to or larger than 83%, the temperature of output sand is less than 40℃ with the temperature of input sand is about between 80 and 90℃, and the productivity is 5t/ (h·m)展开更多
Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized...Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized Bed—VFB). The algorithm is based on the use of the equations of heat and material balance, taking into account the influx of moisture into the layer with cold air and dust—as a carryover. Mode entrainment of dust particles and moisture from the VFB is described by using empirical formulas and Π-theorem. To calculate the cooling time of granules a model of the dynamics of a variable mass VFB was built, which linked the geometrical and physical process parameters to a single dependency. An example showed that mass flow of granules of 248 kg/h and a volume flow of air of 646 m<sup>3</sup>/h with temperature of 30℃ to cool the zeolite granules from 110℃ to 42℃ for 49 s required a vertical apparatus of rectangular shape with four chambers and with volume of 0.2 m<sup>3</sup>. A comparative analysis of technological parameters of the projected cooler with the parameters of typical industrial apparatuses showed that for all indicators: the cooling time of granules, the flow rate of gas (air) and the heat flow, a 4-chambered, vertical apparatus of rectangular shape with VFB was the most effective.展开更多
The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The th...The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5models are modified to take the cyclic operation of the circulator, heat, exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.展开更多
This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which ca...This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.展开更多
Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller ...Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller with various bed silica gel-water pairs is presented. A comprehensive model has been designed to accurately predict the correlation between the overall performance of the proposed chiller system and the functional and structural condition of the building. This model takes into account various factors such as temperature, humidity, and air quality to provide a detailed analysis of the system’s efficiency. At least 20 collectors consisting of a 34.4 m area (each) with a full-cycle time of 480 seconds are essential to improper run conditions. It is necessary to adjust the optimum cycle time for optimal performance. During the investigation, the base condition shows that the cooling capacity is 14 kw, 0.6 COPcycle, and 0.35 COPsolar at noon. Also, conduct a thorough investigation into the chiller’s performance under varying cooling water supply temperatures and various chilled water flow rates.展开更多
文摘A new kind of hot sand cooling equipment with vertical spouted-fluidized bed is developed in this paper. It is similar to the traditional horizontal vibrating fluidized boiling cooler in principle but different from it in structure. The processing principle of the cooler is analyzed. The influence of main structural and processing parameters on the cooling effect and its mechanism are researched. Other characteristics of the cooler are discussed also. Experiment results show that the cooling efficiency η is equal to or larger than 83%, the temperature of output sand is less than 40℃ with the temperature of input sand is about between 80 and 90℃, and the productivity is 5t/ (h·m)
文摘Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized Bed—VFB). The algorithm is based on the use of the equations of heat and material balance, taking into account the influx of moisture into the layer with cold air and dust—as a carryover. Mode entrainment of dust particles and moisture from the VFB is described by using empirical formulas and Π-theorem. To calculate the cooling time of granules a model of the dynamics of a variable mass VFB was built, which linked the geometrical and physical process parameters to a single dependency. An example showed that mass flow of granules of 248 kg/h and a volume flow of air of 646 m<sup>3</sup>/h with temperature of 30℃ to cool the zeolite granules from 110℃ to 42℃ for 49 s required a vertical apparatus of rectangular shape with four chambers and with volume of 0.2 m<sup>3</sup>. A comparative analysis of technological parameters of the projected cooler with the parameters of typical industrial apparatuses showed that for all indicators: the cooling time of granules, the flow rate of gas (air) and the heat flow, a 4-chambered, vertical apparatus of rectangular shape with VFB was the most effective.
基金The project supported by European Fusion Development Agreement (EFDA) Technology Work Program
文摘The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5models are modified to take the cyclic operation of the circulator, heat, exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Thorium uranium fuel cycle characteristics and key problem research Project(No.QYZDY-SSW-JSC016)
文摘This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.
文摘Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller with various bed silica gel-water pairs is presented. A comprehensive model has been designed to accurately predict the correlation between the overall performance of the proposed chiller system and the functional and structural condition of the building. This model takes into account various factors such as temperature, humidity, and air quality to provide a detailed analysis of the system’s efficiency. At least 20 collectors consisting of a 34.4 m area (each) with a full-cycle time of 480 seconds are essential to improper run conditions. It is necessary to adjust the optimum cycle time for optimal performance. During the investigation, the base condition shows that the cooling capacity is 14 kw, 0.6 COPcycle, and 0.35 COPsolar at noon. Also, conduct a thorough investigation into the chiller’s performance under varying cooling water supply temperatures and various chilled water flow rates.