期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于U-V视差算法的障碍物识别技术研究
1
作者 上官珺 《兰州工业高等专科学校学报》 2011年第5期18-23,共6页
介绍了U-V视差算法的数学模型和实现方法,给出了相应的实验结果.通过改进传统的U-V视差算法,引入直线拟合和聚类算法,使检测障碍物效率得到了很大的提高.实验表明改进后的U-V视差算法检测障碍物速度快、精度高,同时适合凹凸障碍物检测,... 介绍了U-V视差算法的数学模型和实现方法,给出了相应的实验结果.通过改进传统的U-V视差算法,引入直线拟合和聚类算法,使检测障碍物效率得到了很大的提高.实验表明改进后的U-V视差算法检测障碍物速度快、精度高,同时适合凹凸障碍物检测,是种较好的检测算法. 展开更多
关键词 障碍物检测 u-v视差算法 直线拟合
下载PDF
双目机器视觉及RetinaNet模型的路侧行人感知定位 被引量:12
2
作者 连丽容 罗文婷 +1 位作者 秦勇 李林 《中国图象图形学报》 CSCD 北大核心 2021年第12期2941-2952,共12页
目的行人感知是自动驾驶中必不可少的一项内容,是行车安全的保障。传统激光雷达和单目视觉组合的行人感知模式,设备硬件成本高且多源数据匹配易导致误差产生。对此,本文结合双目机器视觉技术与深度学习图像识别技术,实现对公共路权环境... 目的行人感知是自动驾驶中必不可少的一项内容,是行车安全的保障。传统激光雷达和单目视觉组合的行人感知模式,设备硬件成本高且多源数据匹配易导致误差产生。对此,本文结合双目机器视觉技术与深度学习图像识别技术,实现对公共路权环境下路侧行人的自动感知与精准定位。方法利用双目道路智能感知系统采集道路前景图像构建4种交通环境下的行人识别模型训练库;采用Retina Net深度学习模型进行目标行人自动识别;通过半全局块匹配(semi-global block matching,SGBM)算法实现行人道路前景图像对的视差值计算;通过计算得出的视差图分别统计U-V方向的视差值,提出结合行人识别模型和U-V视差的测距算法,实现目标行人的坐标定位。结果实验统计2.5 km连续测试路段的行人识别结果,对比人工统计结果,本文算法的召回率为96.27%。与YOLOv3(you only look once)和Tiny-YOLOv3方法在4种交通路况下进行比较,平均F值为96.42%,比YOLOv3和Tiny-YOLOv3分别提高0.9%和3.03%;同时,实验利用标定块在室内分别拍摄3 m、4 m和5 m不同距离的20对双目图像,验证测距算法,计算标准偏差皆小于0.01。结论本文提出的结合RetinaNet目标识别模型与改进U-V视差算法能够实现对道路行人的检测,可以为自动驾驶的安全保障提供技术支持,具有一定的应用价值。 展开更多
关键词 行人检测 深度学习 RetinaNet 半全局块匹配(SGBM)算法 u-v视差算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部