期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
UNet Based onMulti-Object Segmentation and Convolution Neural Network for Object Recognition
1
作者 Nouf Abdullah Almujally Bisma Riaz Chughtai +4 位作者 Naif Al Mudawi Abdulwahab Alazeb Asaad Algarni Hamdan A.Alzahrani Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第7期1563-1580,共18页
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integrat... The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene comprehension.This paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an image.The methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet architecture.Afterward,we use an annotation tool to accurately label the segmented regions.Upon labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob characteristics.For the classification stage,a convolution neural network(CNN)is employed.This comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in images.The experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been documented.After analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance. 展开更多
关键词 unet segmentation BLOB fourier transform convolution neural network
下载PDF
MAAUNet:Exploration of U-shaped encoding and decoding structure for semantic segmentation of medical image 被引量:1
2
作者 SHAO Shuo GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期418-429,共12页
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg... In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference. 展开更多
关键词 u-shaped attention network structure of MAAunet convolutional neural network encoding-decoding structure attention mechanism medical image semantic segmentation
下载PDF
基于UNet模型燃气管道高后果区分割方法研究 被引量:1
3
作者 凌晓 王昕越 +2 位作者 郭凯 孙宝财 程凌宇 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期157-162,共6页
为提升燃气管道设施监测和事故应急响应中的高后果区图像分割精准度和可靠性,通过改进UNet模型结构,使用优化后的Inception Block模块、通道注意力和空间注意力机制的方法,提升模型捕捉关键特征的能力,并引入高斯噪声增强模型鲁棒性,采... 为提升燃气管道设施监测和事故应急响应中的高后果区图像分割精准度和可靠性,通过改进UNet模型结构,使用优化后的Inception Block模块、通道注意力和空间注意力机制的方法,提升模型捕捉关键特征的能力,并引入高斯噪声增强模型鲁棒性,采用保留最佳参数策略得到最优训练参数。然后对SE UNet、UNet++、原始UNet以及改进后UNet模型在航拍图像数据集上的分割效果进行对比和分析。研究结果表明:相对SE UNet、UNet++和原始UNet,改进后UNet模型在分割效果上表现更佳,综合性能优于其他模型。同时,改进后UNet模型提高了分割准确性,降低了误检和漏检风险。研究结果可为燃气管道设施的安全运行和维护提供有力支持。 展开更多
关键词 深度学习 unet模型 卷积神经网络 高后果区 图像分割
下载PDF
An Improved Neural Network Method for Forearm Bone Imaging Segmentation
4
作者 Songzheng Huang Jianfeng Chen 《Open Journal of Radiology》 2022年第4期176-188,共13页
In this paper, we propose several improved neural networks and training strategy using data augmentation to segment human radius accurately and efficiently. This method can provide pixel-level segmentation accuracy th... In this paper, we propose several improved neural networks and training strategy using data augmentation to segment human radius accurately and efficiently. This method can provide pixel-level segmentation accuracy through the low-level features of the neural network, and automatically distinguish the classification of radius. The versatility and applicability can be effectively improved by learning and training digital X-ray images obtained from digital X-ray imaging systems of different manufacturers. 展开更多
关键词 Human Radius Digital X-Ray Image u-shaped unet neural network SEGMENTATION
下载PDF
改进UNet-VAE网络的土壤多类型孔隙三维分割方法
5
作者 韩巧玲 宋美慧 +2 位作者 席本野 赵玥 赵燕东 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期81-89,共9页
不同类型土壤孔隙结构会随生物活动和非生物作用发生形变,从而影响其生态功能,准确分割不同类型的孔隙结构对于研究孔隙结构与生态功能演变关系具有重要意义。针对单个类别孔隙的分割方法分割精度低、分类标准单一、鲁棒性差,无法准确... 不同类型土壤孔隙结构会随生物活动和非生物作用发生形变,从而影响其生态功能,准确分割不同类型的孔隙结构对于研究孔隙结构与生态功能演变关系具有重要意义。针对单个类别孔隙的分割方法分割精度低、分类标准单一、鲁棒性差,无法准确分割和判别生物孔隙、裂隙等相交部分孔隙结构的问题。该研究针对不同类型孔隙尺度差距大的特点,提出了一种改进UNet-VAE网络模型,实现土壤多类型孔隙分割。改进UNet-VAE网络引入多尺度特征融合注意力模块,以实现多尺度信息融合和冗余信息筛选。结合变分自动编码器生成网络(variational autoencoder,VAE),引入噪声和辅助损失函数,以增强网络的泛化能力和鲁棒性。试验结果表明:改进UNet-VAE方法在土壤多类型孔隙(裂隙、生物孔、不规则孔隙和球状孔隙)三维分割中达到了93.83%的平均准确率,与次优VNet方法相比,平均准确率、精确率、召回率和F1值分别提升了3.32,5.06,8.97和8.63个百分点,特别是对于不规则孔隙4项指标分别提升了4.88,15.46,15.70和15.50个百分点,表明改进UNet-VAE法可准确分割多类型孔隙,也验证了深度学习技术在多类型孔隙判别的有效性,可为揭示土壤孔隙结构与演化研究提供有效工具。 展开更多
关键词 土壤 孔隙 卷积神经网络 图像分割 3D unet 注意力模块
下载PDF
基于CBAM-DSC-UNet模型的时空风速预测算法
6
作者 赵陆阳 刘长良 +3 位作者 刘卫亮 李洋 王昕 康佳垚 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期497-505,共9页
针对时空风速预测任务通常使用的卷积神经网络(CNN)和循环神经网络(RNN)联合建模方法中空间信息损失的问题,提出一种基于CBAM-DSC-UNet模型的时空风速预测算法,用于提升空间信息利用率与模型预测精度。该算法将时空风速预测问题视为视... 针对时空风速预测任务通常使用的卷积神经网络(CNN)和循环神经网络(RNN)联合建模方法中空间信息损失的问题,提出一种基于CBAM-DSC-UNet模型的时空风速预测算法,用于提升空间信息利用率与模型预测精度。该算法将时空风速预测问题视为视频预测问题,在提取时空相关性的同时保持空间信息,进而直接输出未来多步的空间风速矩阵。以美国怀俄明州某风电场实际数据为算例进行实验,结果表明,相比其他对比算法,基于CBAM-DSC-UNet模型的时空风速预测算法的平均绝对误差下降8.4%~15.9%,精度有较大提升。 展开更多
关键词 风力预测 卷积神经网络 时空数据 unet 多风电机组
下载PDF
融入CBAM的Res-UNet高分辨率遥感影像语义分割模型 被引量:4
7
作者 孙凌辉 赵丽科 +1 位作者 李琛 成子怡 《地理空间信息》 2024年第2期68-70,共3页
针对现有语义分割方法处理复杂遥感影像细节特征识别能力差、信息丢失等问题,提出一种融合注意力机制的遥感影像语义分割网络模型。模型主干网络采用编码器-解码器架构的U-Net模型,为了缓解梯度和网络退化问题,将残差结构嵌入到主干网络... 针对现有语义分割方法处理复杂遥感影像细节特征识别能力差、信息丢失等问题,提出一种融合注意力机制的遥感影像语义分割网络模型。模型主干网络采用编码器-解码器架构的U-Net模型,为了缓解梯度和网络退化问题,将残差结构嵌入到主干网络中;同时融入通道、空间注意力模块,兼顾影像的细节特征和模型鲁棒性。在ISPRS Potsdam数据集上进行分析验证,实验结果表明,在去除“噪声”、地物边缘“平滑”、细窄地物“连续”、细小目标分割等方面,融入CBAM模块的ResUNet语义分割精度要优于传统网络模型。 展开更多
关键词 Res-unet 注意力机制 神经网络 语义分割
下载PDF
改进Unet++的肾脏肿瘤分割方法
8
作者 刘欣 柏正尧 方成 《计算机应用与软件》 北大核心 2024年第2期238-243,263,共7页
针对人工方式分割CT图像肾脏肿瘤区域耗时费力且存在主观因素影响等问题,提出一种基于卷积神经网络的肾脏肿瘤自动分割算法。算法以Unet++分割网络为基础框架,将预训练的ResNet-34网络中四个特征提取模块作为Unet++网络特征编码器,来提... 针对人工方式分割CT图像肾脏肿瘤区域耗时费力且存在主观因素影响等问题,提出一种基于卷积神经网络的肾脏肿瘤自动分割算法。算法以Unet++分割网络为基础框架,将预训练的ResNet-34网络中四个特征提取模块作为Unet++网络特征编码器,来提取图像特征信息;并将重新设计的空洞空间金字塔池化网络嵌入到Unet++每条解码路径中;不同的解码路径通过特征融合得到肾脏肿瘤分割结果。在KiTS19竞赛提供的数据集上进行验证,实验结果表明,该算法有效提高了CT图像肾脏肿瘤的分割精度。 展开更多
关键词 卷积神经网络 CT图像 unet++网络 空洞空间金字塔池化 肾脏肿瘤
下载PDF
一种基于改进的Unet网络的遥感影像建筑物分割方法 被引量:2
9
作者 向煜 黄志 《城市勘测》 2024年第1期109-113,共5页
针对传统语义分割方法在山地、丘陵等地区提取建筑物噪声大、鲁棒性差、精度不高的问题,提出了一种改进的Unet网络的遥感影像建筑物分割方法。该方法结合模型结构和非结构优化,使用随机数据增强模块增强样本,利用空洞卷积增加卷积层感受... 针对传统语义分割方法在山地、丘陵等地区提取建筑物噪声大、鲁棒性差、精度不高的问题,提出了一种改进的Unet网络的遥感影像建筑物分割方法。该方法结合模型结构和非结构优化,使用随机数据增强模块增强样本,利用空洞卷积增加卷积层感受野,利用FRN数据归一化方法解决小批量对数据归一化的影响并缓解梯度弥散问题,利用ELU激活函数减少噪声、提升鲁棒性、缓解梯度消失,使用随机投票预测模块提高预测准确率。使用重庆农村地区的遥感影像,在Unet、Segnet、Deeplabv3plus及本文改进模型之间对比实验,结果表明,所述方法在复杂环境下的建筑物分割中表现更好,验证样本中的分类总体精度为95.08%,mIoU为81.28%,显著高于其余3种分类算法。该研究可以为山地城市、丘陵地区遥感影像建筑物提取研究提供参考。 展开更多
关键词 卷积神经网络 遥感影像 语义分割 unet 建筑物提取
下载PDF
基于多阶段渐进式UNet压制地震勘探随机噪声
10
作者 贺守峰 李光辉 宁旭亮 《测试技术学报》 2024年第2期210-220,共11页
数据处理是地震勘探的关键环节,UNet网络作为典型的神经网络架构之一,近年来也被用于地震勘探领域,作为一种压制随机噪声的手段。UNet网络基于其对称的编码和解码结构,可以提取广泛的上下文信息,但由于其编码部分过度使用下采样操作,容... 数据处理是地震勘探的关键环节,UNet网络作为典型的神经网络架构之一,近年来也被用于地震勘探领域,作为一种压制随机噪声的手段。UNet网络基于其对称的编码和解码结构,可以提取广泛的上下文信息,但由于其编码部分过度使用下采样操作,容易丢失输入图像的空间细节部分。其次,UNet架构是一种单阶段模型,网络结构简单,在空间精确度和多尺度信息之间难以达到平衡。基于此,提出多阶段渐进式UNet网络(MPUNet),网络前两个阶段采用编码器-解码器学习丰富的多尺度信息,最后一个阶段通过原始分辨率子网络保留精确的空间细节。每两个阶段之间引入监督注意模块,用来重新校准进入下一阶段的特征,以及引入跨阶段特征融合机制,使整个网络框架连接更加紧密,避免有效信息的丢失。人工合成记录和实际地震数据实验结果表明:相比于时频峰值滤波(TFPF)、残差密集网络(RDNet)、传统UNet和加入残差密集块的UNe(t RDBUNet),MPUNet具有更显著的去噪效果,能够有效提高地震数据的信噪比和分辨率,为后续地震资料的分析解释提供了有利的依据。 展开更多
关键词 unet 噪声压制 MPunet 神经网络 地震勘探
下载PDF
基于注意力门UNet网络的CT金属伪影去除方法
11
作者 师晓宇 王斌 《计算机测量与控制》 2024年第4期219-225,共7页
目前,UNet基本模型对带有金属伪影的CT图像的去除能力无法有效满足需求,UNet的结构简单无法提取出足够精确的有效结构和细节信息,并且深层卷积对低级特征的信息利用不够充分;针对上述问题,提出了一个基于注意力门的UNet金属伪影去除网络... 目前,UNet基本模型对带有金属伪影的CT图像的去除能力无法有效满足需求,UNet的结构简单无法提取出足够精确的有效结构和细节信息,并且深层卷积对低级特征的信息利用不够充分;针对上述问题,提出了一个基于注意力门的UNet金属伪影去除网络,该网络采用了注意力门对低层级和高层级的信息进行注意力权重处理,并利用跳跃连接机制到特征解码结构以提高生成CT图像的质量,通过多层级的编解码结构得到最终的去除金属伪影CT图像;实验结果表明,该方法在视觉上取得了更好的条状和带状伪影去除效果的CT图像,并在PSNR指标上取得了35.5913,在FSIM指标上取得了0.9613,在SSIM指标上取得了0.9288的成绩;与ADN、cGANMAR、UNet、CNNMAR、CycleGAN等目前已有的方法相比,该方法在诸多方面均取得了显著的优势。 展开更多
关键词 金属伪影去除 注意力机制 卷积神经网络 unet 编解码
下载PDF
基于改进Unet的电流互感器红外图像检测
12
作者 范晓狄 郑银 +2 位作者 周碧天 代磊 刘鑫东 《电工技术》 2024年第10期71-75,81,共6页
电流互感器作为电力设备中的重要目标,其检测受到高度重视。分析了电流互感器红外图像数据集,在Unet语义分割模型的基础上添加全维注意力动态卷积模块和条纹池化模块,分别替换原网络的常规卷积和最大池化,在中间层添加空间变换网络模块... 电流互感器作为电力设备中的重要目标,其检测受到高度重视。分析了电流互感器红外图像数据集,在Unet语义分割模型的基础上添加全维注意力动态卷积模块和条纹池化模块,分别替换原网络的常规卷积和最大池化,在中间层添加空间变换网络模块,设计了一种Odconv-stn-spm net(Ossnet)语义分割模型。对于验证集的898张电流互感器红外图像,Unet模型OA值为91.30%,Ossnet模型OA值为97.97%。由此可知,所提出的方法有利于提高互感器识别率及其定位精度。 展开更多
关键词 神经网络 电流互感器 unet Ossnet
下载PDF
基于UNet的医学图像分割综述 被引量:16
13
作者 徐光宪 冯春 马飞 《计算机科学与探索》 CSCD 北大核心 2023年第8期1776-1792,共17页
UNet作为卷积神经网络(CNN)中最重要的语义分割框架之一,广泛地应用于医学图像的分类、分割和目标检测等图像处理任务。对UNet的结构原理进行了阐述,并对基于UNet网络及变体模型进行了全面综述,从多个角度对模型算法进行了充分研究与分... UNet作为卷积神经网络(CNN)中最重要的语义分割框架之一,广泛地应用于医学图像的分类、分割和目标检测等图像处理任务。对UNet的结构原理进行了阐述,并对基于UNet网络及变体模型进行了全面综述,从多个角度对模型算法进行了充分研究与分析,试图建立起各个模型间的演进规律。首先,将UNet变体模型根据其应用的七种医学成像系统的不同而进行分类研究,且将核心构成相似的算法进行了对比描述;其次,对每个模型的原理、优缺点和适用的场景等内容进行分析;再次,对主要UNet变体网络从结构原理、核心组成结构、数据集和评价指标四方面进行总结;最后,结合深度学习的最新进展,客观地描述了UNet网络结构存在的固有不足和解决方案,为未来继续改进提供了方向。同时,对UNet可结合的其他技术演进与应用场景等内容进行详述,进一步展望了基于UNet变体网络未来的发展趋势。 展开更多
关键词 医学图像分割 深度学习 卷积神经网络(CNN) unet网络
下载PDF
基于改进Unet模型的视网膜血管分割 被引量:3
14
作者 马玉莹 孟腾云 +1 位作者 张家骅 张丹 《中国数字医学》 2021年第10期98-102,共5页
目的:提出一种能够自动准确分割视网膜血管的卷积神经网络模型,避免传统分割血管计算复杂、准确率不高的问题。方法:在传统Unet模型的基础上,减少网络层数来降低计算复杂度,使用连续空洞卷积对Unet卷积模型中部分卷积层替换来增加感受野... 目的:提出一种能够自动准确分割视网膜血管的卷积神经网络模型,避免传统分割血管计算复杂、准确率不高的问题。方法:在传统Unet模型的基础上,减少网络层数来降低计算复杂度,使用连续空洞卷积对Unet卷积模型中部分卷积层替换来增加感受野,同时增加收缩路径中同层跳跃连接使模型能融合更多信息。结果:对DRIVE数据集的测试结果得到特异度为0.9812,灵敏度为0.7932,准确率为0.9561,1张视网膜血管分割时间为3.11 s。结论:该研究所提方法具有良好的血管分割质量和效率,可以为相关疾病诊断和治疗提供技术支持。 展开更多
关键词 视网膜眼底图像 血管分割 卷积神经网络 unet
下载PDF
基于改进Unet与动态阈值可变FCMSPCNN的医学图像分割 被引量:1
15
作者 邸敬 马帅 +1 位作者 王国栋 廉敬 《中国医学物理学杂志》 CSCD 2023年第3期328-335,共8页
针对深度学习的医学图像分割模型训练时间长和精度不精的问题,提出结合动态阈值可变FCMSPCNN的多尺度上下文编解码结构和注意力机制的CoA Unet(Context Attention Unet)分割方法。首先,使用动态阈值可变的FCMSPCNN预分割出目标矩形区域... 针对深度学习的医学图像分割模型训练时间长和精度不精的问题,提出结合动态阈值可变FCMSPCNN的多尺度上下文编解码结构和注意力机制的CoA Unet(Context Attention Unet)分割方法。首先,使用动态阈值可变的FCMSPCNN预分割出目标矩形区域并使用掩码遮盖背景部分;然后,更深层卷积块加入快捷连接交叉融合不同层次的特征,并通过注意力门突出对目标特征的学习;最后,在编解码器最底层加入改进的多尺度上下文提取器可以更好地提取目标特征信息。模型分别在LiTs和DRIVE数据集上进行验证,肝脏分割指标Miou、Aver_HD、Aver_Dice分别为0.8905、6.3699、0.9477,视网膜血管分割指标分别为0.5892、9.2559、0.7409。实验表明,预处理能缩短4.3%~20.33%的训练时间并提升2%~6%分割精度,与其他5种分割方法相比,CoA Unet能取得更好的整体分割性能。 展开更多
关键词 CoA unet 脉冲耦合神经网络 注意力机制 肝脏分割 视网膜血管分割
下载PDF
端到端的神经网络相位解包裹方法
16
作者 闫恪涛 张洽铭 +3 位作者 佘世刚 高书苑 余文君 于瀛洁 《常州大学学报(自然科学版)》 2025年第1期85-92,共8页
相位解包裹为重要的信号处理过程,其目的是将被包裹相位恢复到原始相位。文章探讨了基于U型神经网络结构(UNet)对测量区域的包裹相位进行相位展开的方法,该方法可以有效地处理包裹相位区域,能够从噪声包裹相位中直接估计平滑的展开相位... 相位解包裹为重要的信号处理过程,其目的是将被包裹相位恢复到原始相位。文章探讨了基于U型神经网络结构(UNet)对测量区域的包裹相位进行相位展开的方法,该方法可以有效地处理包裹相位区域,能够从噪声包裹相位中直接估计平滑的展开相位。以圆域和花瓣状域的包裹相位数据为例来建立训练数据库,通过模拟数据验证该方法的解包裹性能。分析表明,在噪声情况下UNet方法的均方误差小于传统解包裹算法,通过实测数据验证了UNet方法的性能。 展开更多
关键词 干涉测量 相位解包裹 神经网络 unet 相位去噪
下载PDF
基于三维重建与Unet神经网络的隧道掌子面围岩快速分级技术 被引量:17
17
作者 李赤谋 吕明 +2 位作者 袁青 陈宇佳 王树英 《隧道建设(中英文)》 CSCD 北大核心 2022年第1期33-40,共8页
围岩等级是确定和调整隧道施工方案的重要依据,为减少由于施工实际围岩等级与地勘不符造成的经济损失、安全事故等问题,可对传统围岩分级方法进行改进。依托云南文麻高速大法郎隧道,采用三维重建、图像拼接、Unet神经网络等技术,结合围... 围岩等级是确定和调整隧道施工方案的重要依据,为减少由于施工实际围岩等级与地勘不符造成的经济损失、安全事故等问题,可对传统围岩分级方法进行改进。依托云南文麻高速大法郎隧道,采用三维重建、图像拼接、Unet神经网络等技术,结合围岩单轴抗压强度等特性,实现基于岩体完整性和强度特征的掌子面围岩结构面特征识别和围岩级别快速评价。先采用数码相机对隧道掌子面及周边硐壁进行图像信息采集,建立完整的三维模型,后通过投影和图像拼接得到掌子面高清拼接图像;基于Unet神经网络对掌子面图像进行节理迹线自动识别,对节理评价指标计算后得到隧道掌子面完整性信息;最后结合其他围岩特征信息,基于BQ分级方法进行掌子面围岩分级。研究结果表明:该围岩分级方法可获得清晰的掌子面图像,在依托工程现场较原始设计分级更符合现场实际情况,具有良好的应用性。 展开更多
关键词 公路隧道 三维建模 图像拼接 unet神经网络 节理 BQ分级
下载PDF
一种用于地震断层图像识别的SPD-UNet模型 被引量:10
18
作者 席英杰 李克文 +1 位作者 徐延辉 朱剑兵 《计算机工程》 CAS CSCD 北大核心 2021年第12期249-255,共7页
断层是控制油气田形成和分布的主要因素,断层检测和识别对于油气勘探具有重要作用。基于AttentionUNet神经网络模型,构建一种面向地震断层图像识别的SPD-UNet模型。引入空洞卷积,在保证卷积核感受野大小且不损失原始图像分辨率的情况下... 断层是控制油气田形成和分布的主要因素,断层检测和识别对于油气勘探具有重要作用。基于AttentionUNet神经网络模型,构建一种面向地震断层图像识别的SPD-UNet模型。引入空洞卷积,在保证卷积核感受野大小且不损失原始图像分辨率的情况下,增强SPD-UNet模型的断层图像特征提取能力。将金字塔结构的空洞卷积组合成SPD模块,解决空洞卷积的局部信息丢失问题,提高断层信息关联性及图像识别精度。实验结果表明,SPD-UNet模型对于地震断层图像的识别精度优于SegNet与ResUNet模型,并且识别结果与实际标注的地震断层形状及位置更接近。 展开更多
关键词 地震断层识别 图像分割 神经网络 unet模型 空洞卷积 金字塔结构
下载PDF
R-UNet++:用于甲骨材质分类的局部分割网络 被引量:4
19
作者 高未泽 陈善雄 +2 位作者 莫伯峰 杨烨 苏本朋 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第3期415-424,共10页
同材质甲骨残片的缀合工作是甲骨学研究的重要分支,为解决甲骨材质的分类问题,提出以R-UNet++为主的分类框架.R-UNet++继承了UNet++中密集的卷积块链接,并在此基础上引入注意力模块、双线性上采样方法和残差单元的改进策略,在提升网络... 同材质甲骨残片的缀合工作是甲骨学研究的重要分支,为解决甲骨材质的分类问题,提出以R-UNet++为主的分类框架.R-UNet++继承了UNet++中密集的卷积块链接,并在此基础上引入注意力模块、双线性上采样方法和残差单元的改进策略,在提升网络细粒度分割能力的前提下,有效抑制了多尺度特征融合时产生的噪声响应.在分类框架中,首先通过R-UNet++准确分割类间差异性信息;然后采用ResNet50作为分类网络,对R-UNet++的分割图像进一步提取特征,并实现甲骨材质的分类.在真实的甲骨材质数据集中进行了分割和分类实验,结果表明,R-UNet++不仅可以实现高准确度的分割,而且对比其他多种优秀的分类网络,分类准确度有较高的提升,这充分验证了所提分类框架的可行性和高效性. 展开更多
关键词 甲骨材质分类 图像分割 卷积神经网络 unet++
下载PDF
基于多残差UNet的CT图像高精度稀疏重建 被引量:3
20
作者 张艳娇 乔志伟 《计算机应用》 CSCD 北大核心 2021年第10期2964-2969,共6页
为了解决计算机断层成像(CT)稀疏解析重建过程中产生条状伪影的问题,在经典的UNet网络结构的基础上,提出了多残差UNet(Mr-UNet)网络结构,以更好地压制条状伪影。首先,用传统滤波反投影(FBP)解析重建算法稀疏重建出含条状伪影的稀疏图像... 为了解决计算机断层成像(CT)稀疏解析重建过程中产生条状伪影的问题,在经典的UNet网络结构的基础上,提出了多残差UNet(Mr-UNet)网络结构,以更好地压制条状伪影。首先,用传统滤波反投影(FBP)解析重建算法稀疏重建出含条状伪影的稀疏图像;然后,将该类图像作为网络结构的输入,且将相对应的高精度图像作为网络的标签进行训练,使得该网络具有很好的压制条状伪影的性能;最后,将经典UNet原先的四层下采样加深到五层,并在模型中引入残差学习机制将每个卷积单元构建为残差结构,从而提升网络的训练性能。实验中采用了2000对大小为256×256的含条状伪影图像和对应的高精度图像作为数据集,其中,1900对作为训练集,50对作为验证集,其余的作为测试集来训练网络,并验证、评估网络性能。实验结果表明,与传统的总变差(TV)最小化算法及经典的UNet深度学习方法的比较表明,所提模型重建图像的均方根误差(RMSE)平均降低了约0.0025,结构相似度(SSIM)平均提高了约0.003,且能更好地保留图像纹理和细节信息。 展开更多
关键词 稀疏重建 条状伪影 卷积神经网络 unet 多残差unet
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部