期刊文献+
共找到500篇文章
< 1 2 25 >
每页显示 20 50 100
Discharge evolution law of debris flow based on a sharp bend physical modeling test
1
作者 LU Ming SUN Hao +3 位作者 LIU Jinfeng Abrar HUSSAIN SHANG Yuqi FU Hang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1904-1915,共12页
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th... For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel. 展开更多
关键词 Debris flow discharge Erosion effect bend channel Curvature radius
下载PDF
Electrokinetic flow in the U-shaped micro-nanochannels 被引量:3
2
作者 Bilong Qiu Lingyan Gong +1 位作者 Zirui Li Jongyoon Han 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第1期36-42,I0005,共8页
U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis proce... U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis process. Numerical simulation is utilized in this work to study the hidden characteristics of the U-shaped micro-nanochannel system, and the effects of key controlling parameters(the external voltage and pressure) on the device output metrics(current, maximum values of electric field, shear stress and flow velocity) were evaluated. A large portion of current flowing through the whole system goes through the nanochannels, rather than the middle part of the microchannel, with its value increasing linearly with the increase of voltage. Due to the local ion depletion near micro-nanofluidic junction, significantly enhanced electric field(as much as 15 fold at V=1 V and P_0=0) as well as strong shear stress(leading to electrokinetic flow) is generated.With increasing external pressure, both electric field and shear stress can be increased initially(due to shortening of depletion region length), but are suppressed eventually at higher pressure due to the destruction of ion depletion layer. Insights gained from this study could be useful for designing nonlinear electrokinetic pumps and other systems. 展开更多
关键词 u-shaped micro-nanochannels ELECTROKINETIC flow MAXIMUM SHEAR stress U
下载PDF
Discussion on Standardization and Automatic Flow Measurement of U-shaped Channel Water
3
作者 Xiangkun Liu 《Journal of Electronic Research and Application》 2018年第6期5-9,共5页
In human life,water resources are inseparable.In recent years,China’s population growth has accelerated,and the industrial level has been continuously improved,resulting in the rapid use and waste of water resources.... In human life,water resources are inseparable.In recent years,China’s population growth has accelerated,and the industrial level has been continuously improved,resulting in the rapid use and waste of water resources.The protection and rational distribution of water resources are the most pressing issue in China’s water resources.At present,the water measuring facilities of the U-shaped channel mainly include a straight wall measuring pool,a parabolic throat measuring pool,and a long throat measuring pool.In view of the problems in irrigation measurement,the empirical water measurement of basic open-channel and automatic flow measurement system in irrigation district is summarized to improve the accuracy,fairness,and rationality of water measurement,and promote irrigation district management to a higher level. 展开更多
关键词 u-shaped CHANNEL WATER STANDARDIZATION AUTOMATED flow measurement
下载PDF
Numerical models and theoretical analysis of supercritical bend flow 被引量:3
4
作者 Xi-bin Huang Qing Wang 《Water Science and Engineering》 EI CAS CSCD 2018年第4期338-343,共6页
The flow pattern of supercritical flow in bend channels is complicated due to the shock wave phenomenon, which creates difficulties with regard to research and design of bend channels. Using the spillway of an actual ... The flow pattern of supercritical flow in bend channels is complicated due to the shock wave phenomenon, which creates difficulties with regard to research and design of bend channels. Using the spillway of an actual project as an example, a three-dimensional numerical investigation was conducted to simulate the flow in a steep-slope bend based on the renormalization group(RNG) k-ε turbulence flow model and the volume of fluid(VOF) method. The validity of the numerical simulation was demonstrated by comparison between the results of numerical simulation and physical model tests. An optimal scheme of setting vertical vanes in the bend channel is presented. The results of numerical simulation and physical model tests are in agreement, which demonstrates the effectiveness of optimization of vertical vanes and the validity of the three-dimensional numerical simulation. Water depths along both bend walls were analyzed numerically and theoretically. The formula for calculating supercritical water depth along either bend wall was derived, and the critical condition of flow separation from the inner wall was determined. 展开更多
关键词 SUPERCRITICAL flow bend Shock WAVE NUMERICAL simulation VOF method
下载PDF
TWO-PHASE FLOW PATTERNS IN A 90° BEND AT MICROGRAVITY 被引量:2
5
作者 赵建福 K.S.GABRIEL 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期206-211,共6页
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In... Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined. 展开更多
关键词 two-phase flow flow patterns 90°bend MICROGRAVITY
下载PDF
Numerical Simulation of Turbulent Flow of Hydraulic Oil through 90° Circular-sectional Bend 被引量:2
6
作者 WANG Liwei GAO Dianrong ZHANG Yigong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期905-910,共6页
Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated ... Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated losses of pipe bend are very important in practice. In this paper, the relationships between the turbulent flow of hydraulic oil in a bend and the Reynolds number Re and the curvature ratio δare studied by using computational fluid dynamics (CFD). A particular emphasis is put on hydraulic oil, which differs from air or water, flowing through 90° circular-sectional bend, with the purpose of determining the turbulent flow characteristics as well as losses. Three turbulence models, namely, RNG κ-ε model, realizable k-ε model, and Reynolds stress model (RSM), are used respectively. The simulation results in the form of contour and vector plots for all the three turbulence models for pipe bends having curvature ratio of δ=0.5, and the detailed pressure fields and total pressure losses for different Re and δ for RSM are presented. The RSM can predict the stronger secondary flow in the bend better than other models. As Re increases, the pressure gradient changes rapidly, and the pressure magnitude increases at inner and outer wall of the bend. When δ decreases, two transition points or transition zones of pressure gradient arise at inner wall, meanwhile, the transition point moves towards the inlet at outer wall of the bend. Owing to secondary flow, the total pressure loss factor k increases as the bend tightens, on the contrary, as Re increases, factor k decreases due to higher velocity heads, and the rapid change of pressure gradient on the surface of the bend leads to increasing of friction and separation effects, and magnified swirl intensity of secondary flow. A new mathematical model is proposed for predicting pressure loss in terms of Re and δ in order to provide support to the one-dimensional simulation software. The proposed research provides reference for the analysis of oil flow with higher Re in the large bends. 展开更多
关键词 hydraulic oil 90° bend turbulent flow pressure loss computational fluid dynamics (CFD)
下载PDF
The Effect of the Variation of the Downstream Region Distance and Butterfly Valve Angle on Flow Characteristics in a 90 Degree Bended Elbow 被引量:5
7
作者 Se Youl Won Jae Gon Lee Jun Seok Yang 《Modern Mechanical Engineering》 2014年第3期133-143,共11页
This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended u... This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended upward elbow is located in a proximity to the butterfly valve and the butterfly valve open angle is changed. For the change of a butterfly valve open angle from 60% to 100% and the increase of the distance between a valve and a 90 degree bended elbow, the effect of FAC (Flow-Accelerated Corrosion) in the 90 degree bended elbow may be neglected because the value and distribution of the velocity and shear stress is rapidly decreased comparing with the present status installed in an industry, and the data of 100% valve open (Case 3) and L/D ≈ 5 (Case 4) are very good agreement comparing with the reference data, L/D ≈ 8 (Case 2). The reasons are that flow already maintains a fully developed condition and a steady state in spite of less distance than the reference case, L/D = 8. Therefore, smooth flow fields have approached at a 90 degree bended elbow. Then, the effect of shear stress and vortex is hardly investigated around the intrados area of 90 degree bended elbow. 展开更多
关键词 flow DISTURBANCE SHEAR Stress 90 Degree bended ELBOW BUTTERFLY VALVE FAC
下载PDF
Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions 被引量:2
8
作者 WANG Zhi-wei HE Yan-ping +4 位作者 LI Ming-zhi QIU Ming HUANG Chao LIU Ya-dong WANG Zi 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期914-923,共10页
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte... Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend. 展开更多
关键词 two-phase flow 90°pipe bend slug flow fluid−structure interaction dynamic response characteristics
下载PDF
Experimental and Numerical Study of Dilute Gas-Solid Flow inside a 90°Horizontal Square Pipe Bend 被引量:1
9
作者 Walid Aniss Aissa Tarek Abdel Malak Mekhail +1 位作者 Soubhi Ali Hassanein Osama Hamdy 《Open Journal of Fluid Dynamics》 2013年第4期331-339,共9页
A pneumatic test rig is built to test a curved 90° square bend in an open-circuit horizontal-to-horizontal suction wind tunnel system. Sand particles are used to represent the solid phase with a wide range of par... A pneumatic test rig is built to test a curved 90° square bend in an open-circuit horizontal-to-horizontal suction wind tunnel system. Sand particles are used to represent the solid phase with a wide range of particle diameters. Velocity profiles are constructed by measuring the gas velocity using a 3-hole probe. Flow patterns inside the bend duct are introduced using sparks caused by burning sticks of incense with the air flow inside the piping system for flow visualization purpose. Numerical calculations are performed by Lagrangian-particle tracking model for predicting particle trajectories of dispersed phase, and standard k-ε model for predicting the turbulent gas-solid flows in bends. Comparisons made between the theoretical results and experimental data for the velocity vectors and particle trajectories show good agreement. 展开更多
关键词 90° bend CFD GAS-SOLID flow k - ε Model
下载PDF
Simulation of subcritical flow pattern in 180° uniform and convergent open-channel bends using SSIIM 3-D model 被引量:1
10
作者 Rasool GHOBADIAN Kamran MOHAMMADI 《Water Science and Engineering》 EI CAS 2011年第3期270-283,共14页
In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since... In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section. 展开更多
关键词 flow pattern numerical simulation convergent 180° bend SSIIM 3-D model
下载PDF
CVBEM and FVM Computational Model Comparison for Solving Ideal Fluid Flow in a 90-Degree Bend
11
作者 Colin Bloor Theodore V. Hromadka II +1 位作者 Bryce Wilkins Howard McInvale 《Open Journal of Fluid Dynamics》 2016年第4期430-437,共9页
While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boun... While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies. 展开更多
关键词 Complex Variable Boundary Element Method Finite Volume Method Ideal Fluid flow 90-Degree bend Computational Fluid Dynamics
下载PDF
铝合金型材挤压弯曲一体化成形技术研究进展
12
作者 赵国群 孙宇彤 喻俊荃 《塑性工程学报》 CAS CSCD 北大核心 2024年第4期46-55,共10页
相比于直型材,铝合金弯曲型材更适用于日益复杂的部件形状并能更好地满足轻量化需求,具有提升部件结构强度和刚度、节约空间及增加工业设计自由度等优点,在汽车、高铁和航空航天等领域具有广泛用途。相较于传统冷弯成形技术,挤压弯曲一... 相比于直型材,铝合金弯曲型材更适用于日益复杂的部件形状并能更好地满足轻量化需求,具有提升部件结构强度和刚度、节约空间及增加工业设计自由度等优点,在汽车、高铁和航空航天等领域具有广泛用途。相较于传统冷弯成形技术,挤压弯曲一体化成形技术在生产弯曲型材方面具有流程短、精度高、缺陷少等优点,因而受到广泛关注。重点综述了基于外部弯曲装置和材料差速流动的挤压弯曲一体化成形技术的研究进展,分析并总结了不同挤压弯曲一体化成形技术的原理及发展现状,对比了不同挤压弯曲一体化成形技术的优缺点,最后展望未来发展趋势及其研究方向。 展开更多
关键词 铝合金 弯曲型材 挤压弯曲一体化 外部弯曲 材料差速流动
下载PDF
溢洪道弯道段流态改善试验研究和应用
13
作者 黄智敏 付波 +1 位作者 陆汉柱 黄健东 《广东水利水电》 2024年第4期9-13,24,共6页
溢洪道泄槽弯道泄流时,弯道段内易产生横向冲击波,水流紊乱,流态较差,会不同程度地影响溢洪道的正常运行。该文根据广东省部分水库陡槽溢洪道水力模型试验研究成果,介绍改善溢洪道泄槽弯道段流态的断面超高、斜向高低坎、纵向导流墙、... 溢洪道泄槽弯道泄流时,弯道段内易产生横向冲击波,水流紊乱,流态较差,会不同程度地影响溢洪道的正常运行。该文根据广东省部分水库陡槽溢洪道水力模型试验研究成果,介绍改善溢洪道泄槽弯道段流态的断面超高、斜向高低坎、纵向导流墙、阶梯跌坎、弯道前设置消力池等工程措施,并对各种工程措施的适用性进行分析,研究成果可供类似工程设计和运行参考。 展开更多
关键词 陡槽溢洪道 弯道 流态 工程措施 试验研究
下载PDF
含错边焊缝缺陷弯管气固两相流冲蚀磨损研究
14
作者 谭冬梅 甘沁霖 +1 位作者 陶雨 段嘉仪 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期110-120,共11页
在天然气输送系统中,当考虑弯管焊接缺陷时,结构特征差异导致的流场变化会使弯管产生不同的冲蚀特性。采用Computational Fluid Dynamics-Discrete Phase Model(CFD-DPM)方法研究不同颗粒参数、弯管导向、缺陷高度及颗粒入射角度下无错... 在天然气输送系统中,当考虑弯管焊接缺陷时,结构特征差异导致的流场变化会使弯管产生不同的冲蚀特性。采用Computational Fluid Dynamics-Discrete Phase Model(CFD-DPM)方法研究不同颗粒参数、弯管导向、缺陷高度及颗粒入射角度下无错边焊缝弯管、外错边焊缝弯管、内错边焊缝弯管的介质流态特征与冲蚀规律。研究结果表明:(1)气体在弯管部位出现二次流动现象,速度分布出现扭曲,其中外错边焊缝弯管速度分布曲线扭曲幅度大,二次流作用效应最明显;(2)流体速度对冲蚀速率的影响最大,两者呈幂指数函数关系,质量流量次之,与冲蚀速率呈线性函数关系,颗粒粒径的影响最小,与冲蚀速率近似呈线性函数关系;(3)外错边焊缝弯管会在弯头处形成第二冲蚀磨损严重区域,而内错边焊缝与无错边焊缝弯管冲蚀效果相似,均只有1个冲蚀严重区域;(4)当流体在竖直管流向一致时,“H-V”导向弯管最大冲蚀速率均大于“V-H”导向弯管,在不同弯管导向下外错边焊缝弯管冲蚀速率最大;(5)弯管最外侧最大磨损位置随着错边高度发生变化,在一定高度下会使弯头内壁形成第二冲蚀磨损严重区域,且错边高度越大,弯头最外侧所受冲蚀速率越大;(6)颗粒的入射角度会影响弯管的冲蚀效应,其影响程度需结合入口直管长度与颗粒运动状态分析。 展开更多
关键词 焊缝错边缺陷 气固两相流 冲蚀磨损 固体颗粒 弯管导向 入射角度
下载PDF
侧式进/出水口偏流出流下的大涡模拟
15
作者 郭港归 刘亚坤 +2 位作者 魏杰 曹泽 张帝 《水科学进展》 EI CAS CSCD 北大核心 2024年第1期132-144,共13页
实际工程中受地形地质条件影响,引水洞在水平上存在转角,导致出流工况来流不均,进/出水口内部紊流特性的复杂程度显著提升。利用大涡模拟对某带水平弯段抽水蓄能电站侧式进/出水口进行数值计算,其流速、概率密度分布与模型试验吻合较好... 实际工程中受地形地质条件影响,引水洞在水平上存在转角,导致出流工况来流不均,进/出水口内部紊流特性的复杂程度显著提升。利用大涡模拟对某带水平弯段抽水蓄能电站侧式进/出水口进行数值计算,其流速、概率密度分布与模型试验吻合较好。结果表明:偏流出流下进/出水口各流道分流比分别为0.64、0.81、1.26和1.29,水平方向流速分布极为不均;垂直方向主流靠近中下部,垂向雷诺切应力在扩散段内呈一正一负峰值分布,该现象主要由中上部的流动分离和底部的壁面剪切造成;两中间流道的回流区高度大于两边流道,导致中间流道的拦污栅更易受到反向流速影响;流动分离使拦污栅附近存在三轴漩滚,靠近过水断面中上部和底部产生2处能量集中的低频脉动,且各流道在偏流条件下的紊动强度相比均匀来流的紊动强度分别提高11%、25%、29%、3%,不利的水流流态和较高的紊动强度可能对拦污栅造成威胁。 展开更多
关键词 侧式进/出水口 偏流出流 雷诺切应力 流动分离 低频脉动
下载PDF
小麦颗粒弯管流动特性数值模拟研究
16
作者 王博士 李永祥 +2 位作者 张永宇 姜棚仁 徐雪萌 《包装工程》 CAS 北大核心 2024年第5期197-204,共8页
目的为研究小麦颗粒在弯管处的气力输送的特性。方法以欧拉-欧拉双流体模型为基础,结合壁面碰撞摩擦模型、颗粒动理学的固体应力和Gidaspow曳力模型构建出小麦颗粒在弯管处的气力输送模型,采用FLUENT对弯管处小麦颗粒气力输送过程进行... 目的为研究小麦颗粒在弯管处的气力输送的特性。方法以欧拉-欧拉双流体模型为基础,结合壁面碰撞摩擦模型、颗粒动理学的固体应力和Gidaspow曳力模型构建出小麦颗粒在弯管处的气力输送模型,采用FLUENT对弯管处小麦颗粒气力输送过程进行数值模拟,分析小麦颗粒在流经弯管过程中及弯管后直管中的小麦颗粒密度分布、气固两相速度、小麦颗粒与壁面剪切力和颗粒相湍动能。结果经过仿真分析和实验验证,小麦颗粒在流经弯管过程中,其颗粒相体积分数、气固两相速度、颗粒和壁面剪切力以及颗粒相湍动能4个方面随着流入弯管的角度变化而改变;由于颗粒-颗粒、颗粒-管壁之间的碰撞摩擦,小麦颗粒在流出弯管后随着输送距离的增大其各项参数逐渐减缓。结论采用FLUENT软件进行仿真得到了弯管内小麦颗粒的流动特性,并通过实验验证了仿真的可靠性。此次研究结合气固两相理论,为弯管气力输送设计的研发和优化提供了理论基础。 展开更多
关键词 小麦颗粒 气力输送 弯管 FLUENT 流动特性
下载PDF
植被弯曲形态对水流的阻力效应研究
17
作者 李磊 王伟杰 +3 位作者 董飞 黄爱平 冯达骞 徐宇轩 《水电能源科学》 北大核心 2024年第4期72-75,共4页
植被化生态河道的阻力特性是环境水力学的研究热点之一。为探寻柔性植被不同弯曲倾角下的阻力特性,利用圆柱铝棒进行弯曲模拟柔性植被,并采用测力装置,对不同倾角状态下圆柱铝棒及流速范围开展室内水槽试验,首先研究直立圆柱铝棒阻力与... 植被化生态河道的阻力特性是环境水力学的研究热点之一。为探寻柔性植被不同弯曲倾角下的阻力特性,利用圆柱铝棒进行弯曲模拟柔性植被,并采用测力装置,对不同倾角状态下圆柱铝棒及流速范围开展室内水槽试验,首先研究直立圆柱铝棒阻力与流速之间的关系,得到的拖曳力系数Cd符合已有研究,同时验证了测力装置的可靠性;随后开展不同倾角下的植被阻力试验,得到Vogel数随着倾角的减小呈逐渐降低最后突增的趋势。当植被弯曲时,已有的刚性直立植被丛模型不再适用,通过引入与倾角相关参数Cθ对模型进行修正,显著提高了模拟精准度。研究结果可为生态植被化河道水力学精准模拟提供技术支撑。 展开更多
关键词 植被水流 弯曲度 Vogel数 拖曳力系数
下载PDF
基于Flow-3D的陡坡弯道水流三维数值模拟 被引量:18
18
作者 王青 黄细彬 《水资源与水工程学报》 2016年第5期145-149,共5页
弯道急流有其独特的冲击波现象,流态极其复杂,为研究弯道对急流的影响和提出改善措施增添了困难。采用RNG k-ε双方程紊流模型和VOF法,以某工程溢洪道为依托,利用Flow-3D软件,对陡坡弯道段的急流进行了三维数值模拟,通过物理模型试验数... 弯道急流有其独特的冲击波现象,流态极其复杂,为研究弯道对急流的影响和提出改善措施增添了困难。采用RNG k-ε双方程紊流模型和VOF法,以某工程溢洪道为依托,利用Flow-3D软件,对陡坡弯道段的急流进行了三维数值模拟,通过物理模型试验数据的验证,显示数值模拟结果的正确性。通过计算结果,分析了陡坡弯道对急流流态的影响,提出了导流墙法的弯道急流优化方案,通过物理模型进一步证明,采用导流墙法可有效改善急流弯道水流流态,表明借助Flow-3D软件对弯道水流进行三维数值模拟是可行的。 展开更多
关键词 弯道水流 三维数值模拟 RNG K-Ε紊流模型 VOF方法 导流墙
下载PDF
叶片形状对径向式透平波浪发电效率的影响
19
作者 伍儒康 吴必军 +3 位作者 李猛 薛牧文 陈毅 张艳芹 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期218-224,共7页
从后弯管的实验数据出发,设计4个透平,以研究叶片形状对径向式透平用于波浪能发电时转换效率的影响。通过数值分析方法得到4个透平在稳定流动中的性能参数,结果表明4个透平的性能相接近。基于稳定流动计算结果,使用准稳态方法分析4个透... 从后弯管的实验数据出发,设计4个透平,以研究叶片形状对径向式透平用于波浪能发电时转换效率的影响。通过数值分析方法得到4个透平在稳定流动中的性能参数,结果表明4个透平的性能相接近。基于稳定流动计算结果,使用准稳态方法分析4个透平在不稳定流动中的性能,结果表明由于存在反向流动现象,4个透平在不稳定流中的效率存在很大差异。后弯管空气透平的设计不仅要考虑效率,还要考虑反向流动时产生的扭矩。 展开更多
关键词 波浪能 转换效率 透平 后弯管 反向流动
下载PDF
双洞双弯长陡坡导流隧洞明满交替流水力特性研究
20
作者 何永胜 任坤杰 +2 位作者 严伟 蒲宁 李学海 《水利与建筑工程学报》 2024年第1期62-68,共7页
双洞双弯长陡坡导流隧洞内,由于弯道螺旋流的影响,引起明满交替流流量区间增大,加之明满交替流的水力特性为非恒定流,导致洞内明满交替流的界定与导流设计流量的确定难度大幅增加。针对此问题,基于三维数学模型模拟,阐述洞内流态由明流... 双洞双弯长陡坡导流隧洞内,由于弯道螺旋流的影响,引起明满交替流流量区间增大,加之明满交替流的水力特性为非恒定流,导致洞内明满交替流的界定与导流设计流量的确定难度大幅增加。针对此问题,基于三维数学模型模拟,阐述洞内流态由明流经明满交替流转变为有压流的过程;提出携气有压流归为有压流范畴且作为明满交替流与有压流的分界流态;明确明满交替流的水力特征:上游相对作用水头为1.61~2.40;流态为自由面不连续且随时空变化;同一流量下库水位波动较大,内侧隧洞分流比随之呈正向变化,而外侧隧洞分流比则呈反向变化;沿程压力特性呈现有压流特性与明流特性交替变化,作用压力紊动性强。 展开更多
关键词 长陡坡导流隧洞 双洞双弯 明满交替流 压力特性 分流比
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部