Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we...Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping mechanism.This network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution features.DAUNet is composed of three main components.First,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature loss.Second,after upsampling,the network eliminates redundant features,improving the overall efficiency.Finally,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher accuracy.Experimental results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO dataset.Moreover,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
Temperature has an important impact on the corrosion resistance of mold with cooling channels prepared by casting method.The effect of preheating temperature of the mold and the carbon fiber core on the roughness and ...Temperature has an important impact on the corrosion resistance of mold with cooling channels prepared by casting method.The effect of preheating temperature of the mold and the carbon fiber core on the roughness and corrosion resistance of U-shaped cooling channels made of Al-12Si alloy was examined in depth.The experimental results suggest that as the preheating temperature increased from 273 K to 573 K,the roughness of the inner wall of the cooling channel reduced from 96.6μm to 77.0μm.When the preheating temperature continued to increase to 723 K,the roughness increased to 85.3μm.The wetting between the Al melt and the carbon fiber will reduce micro bubbles and waves on the channel wall as the preheating temperature rises,thereby reducing the roughness.However,with the further increase of preheating temperature,it will increase the solidification time of the Al melt.At this time,the carbon fiber and Al melt will take more time to react,which increases the roughness of the channel wall to a certain extent.The results of exfoliation corrosion show that the larger roughness will aggravate exfoliation corrosion.The prolongation of high temperature reaction time between the carbon fiber and the Al melt will lead to the segregation of Si,which is easy to cause intergranular corrosion.Therefore,reasonable preheating temperature has an important impact on the roughness and corrosion resistance of U-shaped cooling channels.展开更多
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban...A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.展开更多
Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is a...Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.展开更多
Quasi-one-dimensional(1D)antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra.Here we demonstrate that a spin gap exists in the quasi-1D Heise...Quasi-one-dimensional(1D)antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra.Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+occupation,in which the Co2+ions with S=3/2 form a 1D spin chain along the a-axis.CoTi2O5 undergoes an antiferromagnetic transition at TN~24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region.Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins,by analyzing the specific heat,the thermal conductivity,and the spin-lattice relaxation rate(1/T1)as a function of temperature,we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN,manifested by the rapid decrease of magnetic specific heat to zero,the double-peak characteristic in thermal conductivity,and the exponential decay of 1/T1 below TN.Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5,which induces the magnetic anisotropy in CoTi2O5,and then opens the spin gap at low temperature.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation...The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.展开更多
The study analysed the digital skill gap of agricultural extension personnel on the use of digital technologies for extension services delivery in South-East, Nigeria. The specific objectives were to describe the soci...The study analysed the digital skill gap of agricultural extension personnel on the use of digital technologies for extension services delivery in South-East, Nigeria. The specific objectives were to describe the socioeconomic characteristics of agricultural extension personnel in South-East Nigeria and identify the digital skill gaps among agricultural extension personnel in the area of study. Purposive sampling technique was used to select 364 Agricultural Extension personnel for the study. Data were collected through the use of structured questionnaire and were analysed using simple descriptive statistical tools such as percentages, mean score, and standard deviation. Findings indicated that most of the personnel were male (57.8%), within the age bracket of 38 - 47 years (62.9%), had B.Sc./HND as their highest educational qualification (74.7%), married (86.3%), and had a household size of 6 - 10 Persons (57.7%). It was further revealed that the majority (70.1%) were members of professional organization, earned a monthly income of N50,001.00 - N100,000.00 (65.7%), had a work experience of 11 - 15 years (51.1%), and owned a smartphone/ iPad/laptop (91.5%). Findings further indicated that they had moderate skill gap in Basic Computer skills (Mean = 4.32), and digital communication and collaboration skills (Mean = 4.26). Findings also showed that they had a high skill gap in digital technical skills (Mean = 2.46), digital data analysis skills (Mean = 2.09), digital content creation skills (Mean = 2.43), digital ethical skills (Mean = 2.79), multimedia production skills (Mean = 2.81), and video library management skills (Mean = 2.39). The study concluded that though there exists a high digital skill gap among agricultural extension personnel in South-East, Nigeria, their socioeconomic characteristics are capable of supporting the implementation of digital extension services in the area. The study recommended that the management of Agricultural Development Programs in South-East, Nigeria, should provide digital training for extension personnel to close the digital skill gap that currently exists among the personnel.展开更多
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
基金supported by the Natural Science Foundation of Hubei Province of China under grant number 2022CFB536the National Natural Science Foundation of China under grant number 62367006the 15th Graduate Education Innovation Fund of Wuhan Institute of Technology under grant number CX2023579.
文摘Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping mechanism.This network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution features.DAUNet is composed of three main components.First,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature loss.Second,after upsampling,the network eliminates redundant features,improving the overall efficiency.Finally,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher accuracy.Experimental results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO dataset.Moreover,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
基金financially supported by the National Natural Science Foundation of China(No.51775353)the National Key Research and Development Program of China(No.2019YFB2006501)+2 种基金the Program for Natural Science Foundation of Liaoning Province(No.2021-BS-150)Science and Technology Program of Liaoning Provincial Department of Education(LJKZ0116)Hebei Key Laboratory of Dielectric and Electrolyte Functional Material,Northeastern University at Qinhuangdao(HKDEFM2021204)。
文摘Temperature has an important impact on the corrosion resistance of mold with cooling channels prepared by casting method.The effect of preheating temperature of the mold and the carbon fiber core on the roughness and corrosion resistance of U-shaped cooling channels made of Al-12Si alloy was examined in depth.The experimental results suggest that as the preheating temperature increased from 273 K to 573 K,the roughness of the inner wall of the cooling channel reduced from 96.6μm to 77.0μm.When the preheating temperature continued to increase to 723 K,the roughness increased to 85.3μm.The wetting between the Al melt and the carbon fiber will reduce micro bubbles and waves on the channel wall as the preheating temperature rises,thereby reducing the roughness.However,with the further increase of preheating temperature,it will increase the solidification time of the Al melt.At this time,the carbon fiber and Al melt will take more time to react,which increases the roughness of the channel wall to a certain extent.The results of exfoliation corrosion show that the larger roughness will aggravate exfoliation corrosion.The prolongation of high temperature reaction time between the carbon fiber and the Al melt will lead to the segregation of Si,which is easy to cause intergranular corrosion.Therefore,reasonable preheating temperature has an important impact on the roughness and corrosion resistance of U-shaped cooling channels.
基金supported by the National Natural Science Foundation of China(Nos.12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.
基金supported by the National Natural Science Foundation of China(Nos.12164032 and 11964026)the Natural Science Foundation of Inner Mongolia(No.2019MS01010)+3 种基金Scientific Research Projects in Colleges and Universities in Inner Mongolia(No.NJZZ19145)Graduate Science Innovative Research Projects(No.S20210281Z)the Natural Science Foundation of Inner Mongolia(No.2022MS01014)Doctor Research Start-up Fund of Inner Mongolia Minzu University(No.BS625).
文摘Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.
基金supported by the National Natural Science Foundation of China (Grant No. 52372003)the Funds from Beijing National Laboratory for Condensed Matter Physics
文摘Quasi-one-dimensional(1D)antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra.Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+occupation,in which the Co2+ions with S=3/2 form a 1D spin chain along the a-axis.CoTi2O5 undergoes an antiferromagnetic transition at TN~24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region.Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins,by analyzing the specific heat,the thermal conductivity,and the spin-lattice relaxation rate(1/T1)as a function of temperature,we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN,manifested by the rapid decrease of magnetic specific heat to zero,the double-peak characteristic in thermal conductivity,and the exponential decay of 1/T1 below TN.Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5,which induces the magnetic anisotropy in CoTi2O5,and then opens the spin gap at low temperature.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金National Natural Science Foundation of China under Grant Nos.52078395 and 52178301the Open Projects Foundation of the State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GF+1 种基金the Dawn Program of Knowledge Innovation Project from the Bureau of Science and Technology of Wuhan Municipality under Grant No.2022010801020357the Science Research Foundation of Wuhan Institute of Technology under Grant No.K2021030。
文摘The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.
文摘The study analysed the digital skill gap of agricultural extension personnel on the use of digital technologies for extension services delivery in South-East, Nigeria. The specific objectives were to describe the socioeconomic characteristics of agricultural extension personnel in South-East Nigeria and identify the digital skill gaps among agricultural extension personnel in the area of study. Purposive sampling technique was used to select 364 Agricultural Extension personnel for the study. Data were collected through the use of structured questionnaire and were analysed using simple descriptive statistical tools such as percentages, mean score, and standard deviation. Findings indicated that most of the personnel were male (57.8%), within the age bracket of 38 - 47 years (62.9%), had B.Sc./HND as their highest educational qualification (74.7%), married (86.3%), and had a household size of 6 - 10 Persons (57.7%). It was further revealed that the majority (70.1%) were members of professional organization, earned a monthly income of N50,001.00 - N100,000.00 (65.7%), had a work experience of 11 - 15 years (51.1%), and owned a smartphone/ iPad/laptop (91.5%). Findings further indicated that they had moderate skill gap in Basic Computer skills (Mean = 4.32), and digital communication and collaboration skills (Mean = 4.26). Findings also showed that they had a high skill gap in digital technical skills (Mean = 2.46), digital data analysis skills (Mean = 2.09), digital content creation skills (Mean = 2.43), digital ethical skills (Mean = 2.79), multimedia production skills (Mean = 2.81), and video library management skills (Mean = 2.39). The study concluded that though there exists a high digital skill gap among agricultural extension personnel in South-East, Nigeria, their socioeconomic characteristics are capable of supporting the implementation of digital extension services in the area. The study recommended that the management of Agricultural Development Programs in South-East, Nigeria, should provide digital training for extension personnel to close the digital skill gap that currently exists among the personnel.
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.