The Olkaria geothermal field is located in the Kenyan Rift valley, about 120 km from Nairobi. Development of geothermal resources in the Olkaria area, a high temperature field, started in the early 1950s. In the subse...The Olkaria geothermal field is located in the Kenyan Rift valley, about 120 km from Nairobi. Development of geothermal resources in the Olkaria area, a high temperature field, started in the early 1950s. In the subsequent years numerous expansions have been carried out with additional power plants being installed in Olkaria. These include a binary plant at Olkaria South West (Olkaria III) in 2000, a condensing plant at Olkaria North East (Olkaria II) in 2003, another binary plant at Olkaria North West (Oserian) in 2004 and finally condensing plants in the year 2014 within East production field (EPF) and Olkaria Domes (OD) areas. The total generation from this field is about 730 Mw. The study considered samples from 4 producing wells from 3 fields of the Olkaria geothermal area (OW-44 from the Olkaria East, OW-724A from the Olkaria North East, and OW-914 and OW-915 from the Olkaria Domes field). The chemical data were first analyzed using SOLVEQ. This helped in the determination of the equilibrium state of the system, the reservoir temperatures and the total moles to be run through CHILLER. The run CHILLER considered the processes that have been proven to be occurring in the Olkaria field i.e., boiling and condensing processes, fluid-fluid mixing rocks and titration resulting from water-rock interaction. The effects on gas evolution were evaluated based on the resulting recalculated gas pressures. The results indicate that the gas species are not in equilibrium with the mineral assemblages. The CHILLER evaluation shows boiling as the major process leading to the evolution of gases. OW-44 had the least gas concentrations, arising from the considered reservoir processes due to degassing, and near surface boiling, besides the removal of NH<sub>3</sub>, H<sub>2</sub> and H<sub>2</sub>S are through the reaction with steam condensate. The gas breakout is most likely in OW-914 and least in OW-44. The study proposes different reservoir management strategies for the different parts of the Olkaria geothermal field. That is by increasing hot reinjection in the eastern sector around well OW-44. The reservoir around OW-914 is to be managed by operating the wells at a minimum flow rate (or even to close them) or the use of chemical inhibitors to prevent calcite scaling.展开更多
The most important data on the thermal regime of the Earth’s interior come from temperature measurements in deep boreholes. The drilling process greatly alters the temperature field of formations surrounding the well...The most important data on the thermal regime of the Earth’s interior come from temperature measurements in deep boreholes. The drilling process greatly alters the temperature field of formations surrounding the wellbore. In permafrost regions, due to thawing of the formation surrounding the wellbore during drilling, representative data can be obtained only by repeated observations over a long period of time (up to 10 years). Usually a number of temperature logs (3 - 10) are taken after the well’s shut-in. Significant expenses (manpower, transportation) are required to monitor the temperature regime of deep wells. In this paper we show that in most of the cases (when the time of refreezing formations is less than the shut-in time) two temperature logs are sufficient to predict formations temperatures during shut-in, to determine the geothermal gradients, and to evaluate the thickness of the permafrost zone. Thus the cost of monitoring the temperature regime of deep wells after shut-in can be drastically reduced. A simple method to process field data (for the well sections below and above the permafrost base) is presented. Temperature logs conducted in two wells were used to demonstrate utilization of this method.展开更多
Study on temperature distribution simulation during cementing of hot dry rock (HDR) geothermal well is rare. It has important guiding significance to simulate the construction process of temperature distribution of ho...Study on temperature distribution simulation during cementing of hot dry rock (HDR) geothermal well is rare. It has important guiding significance to simulate the construction process of temperature distribution of hot dry rock on site construction. Based on numerical simulation of HDR considering heat-fluid-solid coupling, the influence of temperature distribution on well cementing is analyzed when the drilling fluid cycles and reaches stable state, respectively, and when the cement slurry is injected during the cementing process. It is found that the seepage at the well bottom accelerates the flow velocity of wellbore;the stable temperature change is less than the cyclic temperature change;and the upper and lower temperature variation of the stratum is greater when the cement slurry is injected. Therefore, as to cement retarder involved, the influence of temperature variation on concretion should be considered during cementing of the hot dry rock geothermal well.展开更多
A combined analysis of geochemical and production data of 39 wells of the Los Azufres (Mexico) geothermal field (227.4 MWe) over time was developed to investigate the exploitation-related processes for 2003-2011. In t...A combined analysis of geochemical and production data of 39 wells of the Los Azufres (Mexico) geothermal field (227.4 MWe) over time was developed to investigate the exploitation-related processes for 2003-2011. In the south zone, important effects of reinjection were observed through Cl increases in some wells (up to 8000 mg/kg) while in wells with significant boiling, Cl has decreased. In most of the north zone wells, the variations in gas data indicated boiling and condensation of a highly gas-depleted brine, which seems to consist of reinjection fluids. It is suggested that this process maintains the production in the zone relatively stable. The main reservoir exploitation-related processes found were: 1) production of reinjection returns;for this, it was possible to distinguish a) wells that produce liquid and steam from injection, and b) wells that produce steam from injection and sometimes condensed steam from injection;2) boiling: two types of boiling were identified: a) boiling with steam gain, and b) boiling with steam loss. The results indicated that an effective reservoir recharge occurs since very moderate production declining rates were found.展开更多
Balneological use of the Albanian Geothermal springs and waters dates back centuries, but the first modern use started in 1937. Unfortunately they had not been used for its energetic values yet. The temperature of the...Balneological use of the Albanian Geothermal springs and waters dates back centuries, but the first modern use started in 1937. Unfortunately they had not been used for its energetic values yet. The temperature of the water is above 60 °C and the flow above 16 l/s, thus direct utilization is possible, in particular for space heating. Three-dimensional temperature field calculations and engineering calculations on a heating system with heat exchangers are presented here. The results show that the water temperature is expected to be stable and considerably higher temperature is expected through deep well drilling. The University’s Campus of Tirana is composed of 29 buildings, which are partially heated through a coal heater. The installed capacity is 2558kW while the coal consumption is about 920 kg/h. The University’s Campus of Tirana is one of the most important areas and with the highest density of population in Tirana, so it is the best area to show the heat exchanger efficiency. The economic analyses prove that the borehole heat exchangers are more convenient than the coal heating systems.展开更多
The use of the Albanian geothermal springs and waters, for their curative effects (Natural SPA) dates back centuries, since the time of the Roman Empire, while their first modern use started only in 1937. Unfortunat...The use of the Albanian geothermal springs and waters, for their curative effects (Natural SPA) dates back centuries, since the time of the Roman Empire, while their first modern use started only in 1937. Unfortunately they had not been used for its energetic values yet. The temperature of the water is above 60 ~C and the flow above 16 L/s, thus direct utilization is possible, in particular for space heating. Three-dimensional temperature field calculations and engineering calculations on a heating system with heat exchangers are presented here. The results show that the water temperature is expected to be stable and considerably higher temperature is expected through deep well drilling. The University's Campus of Tirana is composed of 29 buildings, which are partially heated through a coal heater. The installed capacity is 2,558 kW while the coal consumption is about 920 kg/h. The University's Campus of Tirana is one of the most important areas and with the highest density of population in Tirana, so it is the best area to show the heat exchanger efficiency. The economic analyses prove that the borehole heat exchangers are more convenient than the coal heating systems.展开更多
A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-...A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-curves of the inflow relationships was shown. We show the process followed for achieve the geothermal type-curve affected with damage for reservoirs with mean salinities of 30000 ppm and temperatures up to 350℃. This type-curve was applied using measurement production data in a Mexican geothermal field. According with the obtained results is shown that the methodology for determining the damage effect using production measurements is a sure alternative for the damage effect calculation. It was used an alternative methodology in order to validate the damage presence and the obtained results were consistent. Last thing shows that both methodologies can be combined as a confident manner.展开更多
文摘The Olkaria geothermal field is located in the Kenyan Rift valley, about 120 km from Nairobi. Development of geothermal resources in the Olkaria area, a high temperature field, started in the early 1950s. In the subsequent years numerous expansions have been carried out with additional power plants being installed in Olkaria. These include a binary plant at Olkaria South West (Olkaria III) in 2000, a condensing plant at Olkaria North East (Olkaria II) in 2003, another binary plant at Olkaria North West (Oserian) in 2004 and finally condensing plants in the year 2014 within East production field (EPF) and Olkaria Domes (OD) areas. The total generation from this field is about 730 Mw. The study considered samples from 4 producing wells from 3 fields of the Olkaria geothermal area (OW-44 from the Olkaria East, OW-724A from the Olkaria North East, and OW-914 and OW-915 from the Olkaria Domes field). The chemical data were first analyzed using SOLVEQ. This helped in the determination of the equilibrium state of the system, the reservoir temperatures and the total moles to be run through CHILLER. The run CHILLER considered the processes that have been proven to be occurring in the Olkaria field i.e., boiling and condensing processes, fluid-fluid mixing rocks and titration resulting from water-rock interaction. The effects on gas evolution were evaluated based on the resulting recalculated gas pressures. The results indicate that the gas species are not in equilibrium with the mineral assemblages. The CHILLER evaluation shows boiling as the major process leading to the evolution of gases. OW-44 had the least gas concentrations, arising from the considered reservoir processes due to degassing, and near surface boiling, besides the removal of NH<sub>3</sub>, H<sub>2</sub> and H<sub>2</sub>S are through the reaction with steam condensate. The gas breakout is most likely in OW-914 and least in OW-44. The study proposes different reservoir management strategies for the different parts of the Olkaria geothermal field. That is by increasing hot reinjection in the eastern sector around well OW-44. The reservoir around OW-914 is to be managed by operating the wells at a minimum flow rate (or even to close them) or the use of chemical inhibitors to prevent calcite scaling.
文摘The most important data on the thermal regime of the Earth’s interior come from temperature measurements in deep boreholes. The drilling process greatly alters the temperature field of formations surrounding the wellbore. In permafrost regions, due to thawing of the formation surrounding the wellbore during drilling, representative data can be obtained only by repeated observations over a long period of time (up to 10 years). Usually a number of temperature logs (3 - 10) are taken after the well’s shut-in. Significant expenses (manpower, transportation) are required to monitor the temperature regime of deep wells. In this paper we show that in most of the cases (when the time of refreezing formations is less than the shut-in time) two temperature logs are sufficient to predict formations temperatures during shut-in, to determine the geothermal gradients, and to evaluate the thickness of the permafrost zone. Thus the cost of monitoring the temperature regime of deep wells after shut-in can be drastically reduced. A simple method to process field data (for the well sections below and above the permafrost base) is presented. Temperature logs conducted in two wells were used to demonstrate utilization of this method.
文摘Study on temperature distribution simulation during cementing of hot dry rock (HDR) geothermal well is rare. It has important guiding significance to simulate the construction process of temperature distribution of hot dry rock on site construction. Based on numerical simulation of HDR considering heat-fluid-solid coupling, the influence of temperature distribution on well cementing is analyzed when the drilling fluid cycles and reaches stable state, respectively, and when the cement slurry is injected during the cementing process. It is found that the seepage at the well bottom accelerates the flow velocity of wellbore;the stable temperature change is less than the cyclic temperature change;and the upper and lower temperature variation of the stratum is greater when the cement slurry is injected. Therefore, as to cement retarder involved, the influence of temperature variation on concretion should be considered during cementing of the hot dry rock geothermal well.
文摘A combined analysis of geochemical and production data of 39 wells of the Los Azufres (Mexico) geothermal field (227.4 MWe) over time was developed to investigate the exploitation-related processes for 2003-2011. In the south zone, important effects of reinjection were observed through Cl increases in some wells (up to 8000 mg/kg) while in wells with significant boiling, Cl has decreased. In most of the north zone wells, the variations in gas data indicated boiling and condensation of a highly gas-depleted brine, which seems to consist of reinjection fluids. It is suggested that this process maintains the production in the zone relatively stable. The main reservoir exploitation-related processes found were: 1) production of reinjection returns;for this, it was possible to distinguish a) wells that produce liquid and steam from injection, and b) wells that produce steam from injection and sometimes condensed steam from injection;2) boiling: two types of boiling were identified: a) boiling with steam gain, and b) boiling with steam loss. The results indicated that an effective reservoir recharge occurs since very moderate production declining rates were found.
文摘Balneological use of the Albanian Geothermal springs and waters dates back centuries, but the first modern use started in 1937. Unfortunately they had not been used for its energetic values yet. The temperature of the water is above 60 °C and the flow above 16 l/s, thus direct utilization is possible, in particular for space heating. Three-dimensional temperature field calculations and engineering calculations on a heating system with heat exchangers are presented here. The results show that the water temperature is expected to be stable and considerably higher temperature is expected through deep well drilling. The University’s Campus of Tirana is composed of 29 buildings, which are partially heated through a coal heater. The installed capacity is 2558kW while the coal consumption is about 920 kg/h. The University’s Campus of Tirana is one of the most important areas and with the highest density of population in Tirana, so it is the best area to show the heat exchanger efficiency. The economic analyses prove that the borehole heat exchangers are more convenient than the coal heating systems.
文摘The use of the Albanian geothermal springs and waters, for their curative effects (Natural SPA) dates back centuries, since the time of the Roman Empire, while their first modern use started only in 1937. Unfortunately they had not been used for its energetic values yet. The temperature of the water is above 60 ~C and the flow above 16 L/s, thus direct utilization is possible, in particular for space heating. Three-dimensional temperature field calculations and engineering calculations on a heating system with heat exchangers are presented here. The results show that the water temperature is expected to be stable and considerably higher temperature is expected through deep well drilling. The University's Campus of Tirana is composed of 29 buildings, which are partially heated through a coal heater. The installed capacity is 2,558 kW while the coal consumption is about 920 kg/h. The University's Campus of Tirana is one of the most important areas and with the highest density of population in Tirana, so it is the best area to show the heat exchanger efficiency. The economic analyses prove that the borehole heat exchangers are more convenient than the coal heating systems.
文摘A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-curves of the inflow relationships was shown. We show the process followed for achieve the geothermal type-curve affected with damage for reservoirs with mean salinities of 30000 ppm and temperatures up to 350℃. This type-curve was applied using measurement production data in a Mexican geothermal field. According with the obtained results is shown that the methodology for determining the damage effect using production measurements is a sure alternative for the damage effect calculation. It was used an alternative methodology in order to validate the damage presence and the obtained results were consistent. Last thing shows that both methodologies can be combined as a confident manner.