Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure wa...Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly.展开更多
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve...Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.展开更多
Microporous polyvinylidene fluoride(PVDF)hollow fibre membranes were spun using the dry-wet phaseinversion method.By means of dip-coating technique,a uniform coating with thickness of around 5-12 μm of polyvinyldimet...Microporous polyvinylidene fluoride(PVDF)hollow fibre membranes were spun using the dry-wet phaseinversion method.By means of dip-coating technique,a uniform coating with thickness of around 5-12 μm of polyvinyldimethylsiloxane(PVDMS)was formed on the surface of porous PVDF hollow fibers.The structural parameters of PVDFsubstrate membrane were estimated by gas permeation test.Using N_2/O_2 as the medium,the separation properties ofPVDMS-PVDF composite hollow fiber membranes were also evaluated experimentally.The experimental data of bothpermeability and selectivity are in good agreement with the theoretical results predicted by the presented pore-distributionmodel.In order to obtain the compact composite membrane free of defects by the dip-coating technique,the thickness ofPVDMS skin must be higher than 5 μm.展开更多
Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cros...Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SAPVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of different sodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance were investigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranes for ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SA concentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 ℃, SA-PVA/PSF hollow fiber composite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m^2·h). Besides, SA-PVA/PSF hollow fiber composite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solution on pervaporation performance.展开更多
With microporous polysulfone hollow fiber as the substrate, a polypiperazine amide nanofiltration composite membrane was prepared by interfacial polymerization in trimesoyl hexane solution as oil phase and piperazine ...With microporous polysulfone hollow fiber as the substrate, a polypiperazine amide nanofiltration composite membrane was prepared by interfacial polymerization in trimesoyl hexane solution as oil phase and piperazine aqueous solution as water phase. The conditions of the preparation, such as concentrations of monomer solutions, reaction time and temperature, annealing treatment, etc., were investigated. The hollow fiber composite herewith obtained showed high performance with water fluxes over 40 L·m -2·hr -1 and MgSO4 rejection of 93% under a pressure of 0.40 MPa.展开更多
Poly (N,N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes.H...Poly (N,N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes.Hollow fiber composite membranes were fabricated by coating the blend on polysulfone (PSf) hollow fiber substrate.Introduction of fluorine ion improved the separation performance of the membrane.The concentration of coating solution was adjusted to obtain a membrane with high permeance.The composite membrane showed good performance with the CO2 permeance of 30.4 GPU (1 GPU=10-6 cm3 (STP)/(cm 2 s cmHg)),and selectivities to CO2/N2,CO2/CH4,CO2/H2 and O2/N2 of 47.2,37.6,1.75 and 4.70,respectively.Potassium fluoride (KF),due to its low cost,was also used as a substitute of CsF to prepare composite membrane and the permeation data showed that CsF can be replaced by KF.The effect of operating temperature on the permeation properties of the composite membrane was also investigated.展开更多
A new interfacial polymerization (IP) procedure is developed in order to synthesize polypiperazine-amide thin-film membrane on the inner surface of poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber u...A new interfacial polymerization (IP) procedure is developed in order to synthesize polypiperazine-amide thin-film membrane on the inner surface of poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber ultrafiltration (UF) membrane. A hollow fiber composite membrane with good performance was prepared and studied by PT-IR and scanning electron microscopy.展开更多
Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration(UF) membrane as substrate with recovered PFSA.The composite membranes we...Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration(UF) membrane as substrate with recovered PFSA.The composite membranes were applied to the pervaporation separation of 95% ethanol(EtOH)/H2O mixture.SEM images show that the thickness of the PFSA skin layer of the composite membranes is about 2 μm,much thinner than those of other PFSA composite membranes revealed in the literatures.Effects of annealing temperature,coating solution concentration and counter-ions of PFSA on the pervaporation performances of the composite membranes were investigated.The total flux decreases and separation factor increases with the increase of annealing temperature.The highest permeation flux of 3230 g m-2 h-1 and a separation factor of 5.4 is obtained for the composite membrane annealed at 80°C.The lowest permeation flux of 396 g m-2 h-1 and a separation factor of 27.7 is obtained for the composite membrane annealed at 160°C.The permeation performances of the PFSA/PSf composite membrane are evidently influenced by the counter-ions of PFSA.The flux sequence of the PFSA/PSf composite membranes with different counter-ions is H+】Li+】Ca2+】Mg2+】Na+】K+】Ba2+】Fe3+】Al3+,and the separation factor sequence is H+【Li+【Al3+【Na+【Mg2+【Ca2+【K+ 【Ba2+【Fe3+.The apparent activation energy △Eapp values of the composite membranes with different counter-ions were calculated by Arrhenius law.The sequence of △Eapp values for the membranes with monovalent counter-ions is Li+】Na+】K+.There are very little variations of △Eapp values between the composite membranes with three divalent counterions(Mg2+,Ca2+ and Ba2+),and the △Eapp values of the composite membranes with two trivalent counterions(Fe3+ and Al3+) are relatively high.展开更多
文摘Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly.
基金Supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIP)(No.CRC-15-07-KIER)
文摘Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.
基金This work was supported by the National Natural Science Foundation of China(No.20076025).
文摘Microporous polyvinylidene fluoride(PVDF)hollow fibre membranes were spun using the dry-wet phaseinversion method.By means of dip-coating technique,a uniform coating with thickness of around 5-12 μm of polyvinyldimethylsiloxane(PVDMS)was formed on the surface of porous PVDF hollow fibers.The structural parameters of PVDFsubstrate membrane were estimated by gas permeation test.Using N_2/O_2 as the medium,the separation properties ofPVDMS-PVDF composite hollow fiber membranes were also evaluated experimentally.The experimental data of bothpermeability and selectivity are in good agreement with the theoretical results predicted by the presented pore-distributionmodel.In order to obtain the compact composite membrane free of defects by the dip-coating technique,the thickness ofPVDMS skin must be higher than 5 μm.
基金Project supported by the National Basic Research Program of China (Grant No.2003CB615705)
文摘Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SAPVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of different sodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance were investigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranes for ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SA concentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 ℃, SA-PVA/PSF hollow fiber composite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m^2·h). Besides, SA-PVA/PSF hollow fiber composite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solution on pervaporation performance.
文摘With microporous polysulfone hollow fiber as the substrate, a polypiperazine amide nanofiltration composite membrane was prepared by interfacial polymerization in trimesoyl hexane solution as oil phase and piperazine aqueous solution as water phase. The conditions of the preparation, such as concentrations of monomer solutions, reaction time and temperature, annealing treatment, etc., were investigated. The hollow fiber composite herewith obtained showed high performance with water fluxes over 40 L·m -2·hr -1 and MgSO4 rejection of 93% under a pressure of 0.40 MPa.
基金supported by the Chinese Ministry of Science and Technology(973 Program,No. 2009CB623405)the National Natural Science Foundation of China(NSFC program,20706051 and 20836006)
文摘Poly (N,N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes.Hollow fiber composite membranes were fabricated by coating the blend on polysulfone (PSf) hollow fiber substrate.Introduction of fluorine ion improved the separation performance of the membrane.The concentration of coating solution was adjusted to obtain a membrane with high permeance.The composite membrane showed good performance with the CO2 permeance of 30.4 GPU (1 GPU=10-6 cm3 (STP)/(cm 2 s cmHg)),and selectivities to CO2/N2,CO2/CH4,CO2/H2 and O2/N2 of 47.2,37.6,1.75 and 4.70,respectively.Potassium fluoride (KF),due to its low cost,was also used as a substitute of CsF to prepare composite membrane and the permeation data showed that CsF can be replaced by KF.The effect of operating temperature on the permeation properties of the composite membrane was also investigated.
文摘A new interfacial polymerization (IP) procedure is developed in order to synthesize polypiperazine-amide thin-film membrane on the inner surface of poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber ultrafiltration (UF) membrane. A hollow fiber composite membrane with good performance was prepared and studied by PT-IR and scanning electron microscopy.
基金supported by the Leading Academic Discipline Project of SHNU (No.DZL807)Innovation Program of Shanghai Municipal Education Commission (No.09YZ163)Shanghai Municipal Natural Science Foundation (No.09ZR1423300)
文摘Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration(UF) membrane as substrate with recovered PFSA.The composite membranes were applied to the pervaporation separation of 95% ethanol(EtOH)/H2O mixture.SEM images show that the thickness of the PFSA skin layer of the composite membranes is about 2 μm,much thinner than those of other PFSA composite membranes revealed in the literatures.Effects of annealing temperature,coating solution concentration and counter-ions of PFSA on the pervaporation performances of the composite membranes were investigated.The total flux decreases and separation factor increases with the increase of annealing temperature.The highest permeation flux of 3230 g m-2 h-1 and a separation factor of 5.4 is obtained for the composite membrane annealed at 80°C.The lowest permeation flux of 396 g m-2 h-1 and a separation factor of 27.7 is obtained for the composite membrane annealed at 160°C.The permeation performances of the PFSA/PSf composite membrane are evidently influenced by the counter-ions of PFSA.The flux sequence of the PFSA/PSf composite membranes with different counter-ions is H+】Li+】Ca2+】Mg2+】Na+】K+】Ba2+】Fe3+】Al3+,and the separation factor sequence is H+【Li+【Al3+【Na+【Mg2+【Ca2+【K+ 【Ba2+【Fe3+.The apparent activation energy △Eapp values of the composite membranes with different counter-ions were calculated by Arrhenius law.The sequence of △Eapp values for the membranes with monovalent counter-ions is Li+】Na+】K+.There are very little variations of △Eapp values between the composite membranes with three divalent counterions(Mg2+,Ca2+ and Ba2+),and the △Eapp values of the composite membranes with two trivalent counterions(Fe3+ and Al3+) are relatively high.