Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a...Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.展开更多
Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper...Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows: (1) the new dampers have stable hysteresis behavior under large displacements; (2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and (3) simplified design methodology of the damper is effective.展开更多
This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities ...This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.展开更多
This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation met...This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.展开更多
A new combined steel lead damper (NCSLD) was presented. Construction and working mechanism of NCSLD were introduced,pseudo-static tests of the small size dampers which would be used in the subsequent shaking table tes...A new combined steel lead damper (NCSLD) was presented. Construction and working mechanism of NCSLD were introduced,pseudo-static tests of the small size dampers which would be used in the subsequent shaking table tests were carried out for the study of mechanical properties of NCSLD using electro-hydraulic servo press-shear machine. Processing technology of the damper was improved. Shaking table tests under two-dimensional excitation on structural aseismic control of a one-story structure model were carried out using the small size NCSLD; parameters of the structure and shaking table were also introduced. Results indicate that process improvement is beneficial to the implementation of working mechanism of the damper,NCSLD has full hysteresis loop which takes on bilinearity,NCSLD has obvious energy dissipation effect and it can control structural seismic response effectively.展开更多
As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences th...As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences the realization of the values of geometric characteristics of the piles cross-section (the moment of inertia and the section modulus) reduced to the length unit of the construction. The article offers new and simple solutions for realization and economically effective technological approaches to provide joint work of the sheet piles being considered, which improve the adequacy of design and reliability of maintenance of thin retaining walls.展开更多
为研究变截面钢桁梁人行桥人致振动舒适度及调谐质量阻尼器(tuned mass damper,TMD)的减振效果,以某京杭大运河钢桁梁人行桥为研究对象,采用有限元模拟和现场实测2种方式,研究钢桁梁人行桥人致振动响应。基于有限元模型,分析未安装TMD...为研究变截面钢桁梁人行桥人致振动舒适度及调谐质量阻尼器(tuned mass damper,TMD)的减振效果,以某京杭大运河钢桁梁人行桥为研究对象,采用有限元模拟和现场实测2种方式,研究钢桁梁人行桥人致振动响应。基于有限元模型,分析未安装TMD之前的桥梁振动响应,确定行人舒适度水平,讨论行人密度、阻尼比和人群激励频率等参数对其的影响,以此给出TMD设计参数,并分析了TMD质量比对减振效果的影响;对安装TMD之后的人行桥进行了现场实测,并在实测基础上,采用加速度时程和频谱分析对相应工况进行桥梁人致振动响应研究。研究结果表明:安装TMD之前,该桥加速度响应超过规范限值,需要考虑人致振动的影响;其加速度响应在一定范围内随着行人密度增长而增大,随着阻尼比的增大而减小;当行人步频接近桥梁某阶振动频率时,振动响应明显增大;安装TMD之后,该桥实测的人致振动响应有所降低,其响应规律与模拟结果较为一致。文中的研究成果可为变截面钢桁梁人行桥人致振动研究提供理论支持。展开更多
基金provided by the National Natural Science Foundation of China(No.51404256)the National Basic Research Program of China(No.2013CB227900)Fundamental Research Funds for the Central Universities of China(No. 2014QNA51)
文摘Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.
基金Natural Science Foundation of China under Grant Nos.51178250 and 51261120377Tsinghua University of China under Grant No.2010Z01001
文摘Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows: (1) the new dampers have stable hysteresis behavior under large displacements; (2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and (3) simplified design methodology of the damper is effective.
基金Natural Science Foundation of China under Grant No.51278104
文摘This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.
文摘This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50508012)Science &Technology Plan Project of Guangdong Province(Grant No. 20055190030)+1 种基金Key Basic Research Project of Science and Technology Ministry (Grant No. 2004CCA03300)Science &Technology Project of Guangzhou Education Bureau(Grant No.08C05)
文摘A new combined steel lead damper (NCSLD) was presented. Construction and working mechanism of NCSLD were introduced,pseudo-static tests of the small size dampers which would be used in the subsequent shaking table tests were carried out for the study of mechanical properties of NCSLD using electro-hydraulic servo press-shear machine. Processing technology of the damper was improved. Shaking table tests under two-dimensional excitation on structural aseismic control of a one-story structure model were carried out using the small size NCSLD; parameters of the structure and shaking table were also introduced. Results indicate that process improvement is beneficial to the implementation of working mechanism of the damper,NCSLD has full hysteresis loop which takes on bilinearity,NCSLD has obvious energy dissipation effect and it can control structural seismic response effectively.
文摘As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences the realization of the values of geometric characteristics of the piles cross-section (the moment of inertia and the section modulus) reduced to the length unit of the construction. The article offers new and simple solutions for realization and economically effective technological approaches to provide joint work of the sheet piles being considered, which improve the adequacy of design and reliability of maintenance of thin retaining walls.
文摘为研究变截面钢桁梁人行桥人致振动舒适度及调谐质量阻尼器(tuned mass damper,TMD)的减振效果,以某京杭大运河钢桁梁人行桥为研究对象,采用有限元模拟和现场实测2种方式,研究钢桁梁人行桥人致振动响应。基于有限元模型,分析未安装TMD之前的桥梁振动响应,确定行人舒适度水平,讨论行人密度、阻尼比和人群激励频率等参数对其的影响,以此给出TMD设计参数,并分析了TMD质量比对减振效果的影响;对安装TMD之后的人行桥进行了现场实测,并在实测基础上,采用加速度时程和频谱分析对相应工况进行桥梁人致振动响应研究。研究结果表明:安装TMD之前,该桥加速度响应超过规范限值,需要考虑人致振动的影响;其加速度响应在一定范围内随着行人密度增长而增大,随着阻尼比的增大而减小;当行人步频接近桥梁某阶振动频率时,振动响应明显增大;安装TMD之后,该桥实测的人致振动响应有所降低,其响应规律与模拟结果较为一致。文中的研究成果可为变截面钢桁梁人行桥人致振动研究提供理论支持。