A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi...A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results.展开更多
A utility tunnel system consists of pipes and ancillary facilities.In this paper,a finite element model of a concrete utility tunnel with pipes inside is established.Several tunnel segments were built to simulate a re...A utility tunnel system consists of pipes and ancillary facilities.In this paper,a finite element model of a concrete utility tunnel with pipes inside is established.Several tunnel segments were built to simulate a real utility tunnel,while the pipe was fixed by springs on the brackets in the utility tunnel.Using the discrete soil spring element to simulate the soil-structure interaction,actual earthquake records were adopted as excitation to analyze the seismic responses of pipes in a utility tunnel.Moreover,the influences of different parameters,including soil type,earthquake records,and field apparent wave velocity on the seismic responses of the utility tunnel and the pipes inside were studied.Finally,the seismic responses of buried pipes were analyzed and compared with those of pipes in a utility tunnel to evaluate the seismic performance of pipes for two working conditions.展开更多
The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled pipes.The related acoustic methods and equipment are gradually coming to the market,but their theo...The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled pipes.The related acoustic methods and equipment are gradually coming to the market,but their theoretical research obviously lags behind the field practice,which seriously restricts the breakthrough and innovation of this technology.Based on the fully three-dimensional effect of the surrounding medium,a coupled motion equation of axisymmetric wave of buried liquid-filled pipes is derived in detail,a contact coefficient is used to express the coupling strength between surrounding medium and pipe,then,a general equation of motion was derived which contain the pipe soil lubrication contact,pipe soil compact contact and pipe in water and air.Finally,the corresponding numerical calculation model is established and solved used numerical method.The shear effects of the surrounding medium and the shear effects at the interface between surrounding medium and pipe are discussed in detail.The output indicates that the surrounding medium is to add mass to the pipe wall,but the shear effect is to add stiffness.With the consideration of the contact strength between the pipe and the medium,the additional mass and the pipe wall will resonate at a specific frequency,resulting in a significant increase in the radiation wave to the surrounding medium.The research contents have great guiding effect on the theory of acoustic wave propagation and the engineering application of leak detection technology in the buried pipe.展开更多
The overall objective of this study was to provide guidance for proper design of profile-walled pipe. Data from buried pipe tests on HDPE pipes with thirteen different profiles were included in the study. These tests ...The overall objective of this study was to provide guidance for proper design of profile-walled pipe. Data from buried pipe tests on HDPE pipes with thirteen different profiles were included in the study. These tests were run in the soil cell at Utah State University. Also, parallel plate tests were also completed on the pipe samples. Data from 39 buried pipe tests were analyzed. The buried tests were at 75, 85 and 95 percent of standard Proctor density. This paper summarizes the results of that study and focuses on the tests buried in 85 percent dense soil. In addition to the experimental data, a portion of this paper focuses on finite element analysis results to confirm and extend the results from the physical tests. Design limits are recommended for several dimensionless parameters that describe profile geometry. One of the significant conclusions of this study was that pipes with profiles that perform well when buried in soil also perform well in a parallel plate tests. The identities of the pipe manufacturers are not disclosed, and pipes are only described in terms of basic parameters such as cross-sectional area and area moments of inertia.展开更多
A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal def...A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal deformations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put forward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabilized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics parameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the construction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3Dand deformation monitoring.展开更多
In this study, a number of nonlinear time-history dynamic analyses are conducted on a part of Tehran water distribution network to investigate its functionality during transient large ground motions. The network is of...In this study, a number of nonlinear time-history dynamic analyses are conducted on a part of Tehran water distribution network to investigate its functionality during transient large ground motions. The network is of 950-meter length, consisting of ductile iron pipes segments of 6-meter length. Pipes are modeled using beam elements and springs characterize the connections. Considering the time lag between support inputs, and the nonlinear soil-pipe interaction, by scaling the amplitude of the Tab as earthquake record, incremental dynamic analysis is carried out on the network in two orthogonal directions and the sensitivity of the network response is examined. Furthermore, the effects of variations in soil damping and soil spring stiffness are also studied in the network analysis. Finally the effect of changes in angle between incoming wave and pipeline is considered on a simplified network. Results show that the points other than critical ones at network intersections remain almost intact and when the angle of incidence is 30 degrees the stress and rotation peak.展开更多
It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly im...It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid.展开更多
基金National Science Foundation Under Grant No.CMS-0085256
文摘A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results.
基金supported by the Ministry of Science and Technology of China(SLDRCE19-B-24).
文摘A utility tunnel system consists of pipes and ancillary facilities.In this paper,a finite element model of a concrete utility tunnel with pipes inside is established.Several tunnel segments were built to simulate a real utility tunnel,while the pipe was fixed by springs on the brackets in the utility tunnel.Using the discrete soil spring element to simulate the soil-structure interaction,actual earthquake records were adopted as excitation to analyze the seismic responses of pipes in a utility tunnel.Moreover,the influences of different parameters,including soil type,earthquake records,and field apparent wave velocity on the seismic responses of the utility tunnel and the pipes inside were studied.Finally,the seismic responses of buried pipes were analyzed and compared with those of pipes in a utility tunnel to evaluate the seismic performance of pipes for two working conditions.
基金National Natural Science Foundation of China(Grant No.11774378).
文摘The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled pipes.The related acoustic methods and equipment are gradually coming to the market,but their theoretical research obviously lags behind the field practice,which seriously restricts the breakthrough and innovation of this technology.Based on the fully three-dimensional effect of the surrounding medium,a coupled motion equation of axisymmetric wave of buried liquid-filled pipes is derived in detail,a contact coefficient is used to express the coupling strength between surrounding medium and pipe,then,a general equation of motion was derived which contain the pipe soil lubrication contact,pipe soil compact contact and pipe in water and air.Finally,the corresponding numerical calculation model is established and solved used numerical method.The shear effects of the surrounding medium and the shear effects at the interface between surrounding medium and pipe are discussed in detail.The output indicates that the surrounding medium is to add mass to the pipe wall,but the shear effect is to add stiffness.With the consideration of the contact strength between the pipe and the medium,the additional mass and the pipe wall will resonate at a specific frequency,resulting in a significant increase in the radiation wave to the surrounding medium.The research contents have great guiding effect on the theory of acoustic wave propagation and the engineering application of leak detection technology in the buried pipe.
文摘The overall objective of this study was to provide guidance for proper design of profile-walled pipe. Data from buried pipe tests on HDPE pipes with thirteen different profiles were included in the study. These tests were run in the soil cell at Utah State University. Also, parallel plate tests were also completed on the pipe samples. Data from 39 buried pipe tests were analyzed. The buried tests were at 75, 85 and 95 percent of standard Proctor density. This paper summarizes the results of that study and focuses on the tests buried in 85 percent dense soil. In addition to the experimental data, a portion of this paper focuses on finite element analysis results to confirm and extend the results from the physical tests. Design limits are recommended for several dimensionless parameters that describe profile geometry. One of the significant conclusions of this study was that pipes with profiles that perform well when buried in soil also perform well in a parallel plate tests. The identities of the pipe manufacturers are not disclosed, and pipes are only described in terms of basic parameters such as cross-sectional area and area moments of inertia.
基金Major Science and Technology R&D Program of Ministry of Railways(No.2005K001-D(G)-2)
文摘A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal deformations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put forward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabilized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics parameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the construction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3Dand deformation monitoring.
文摘In this study, a number of nonlinear time-history dynamic analyses are conducted on a part of Tehran water distribution network to investigate its functionality during transient large ground motions. The network is of 950-meter length, consisting of ductile iron pipes segments of 6-meter length. Pipes are modeled using beam elements and springs characterize the connections. Considering the time lag between support inputs, and the nonlinear soil-pipe interaction, by scaling the amplitude of the Tab as earthquake record, incremental dynamic analysis is carried out on the network in two orthogonal directions and the sensitivity of the network response is examined. Furthermore, the effects of variations in soil damping and soil spring stiffness are also studied in the network analysis. Finally the effect of changes in angle between incoming wave and pipeline is considered on a simplified network. Results show that the points other than critical ones at network intersections remain almost intact and when the angle of incidence is 30 degrees the stress and rotation peak.
基金Projects(51974225,51874229,51674188,51904224,51904225,51504182) supported by the National Natural Science Foundation of ChinaProjects(2018JM5161,2018JQ5183,2015JQ5187) supported by the Natural Science Basic Research Plan of Shaanxi,China
文摘It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid.