Inspired by the idea that bionic non-smooth surfaces(BNSS)can reduce water flow resistance,the application of BNSS resistance reduction method in grooves surface of antiskid tire tread pattern has been investigated fo...Inspired by the idea that bionic non-smooth surfaces(BNSS)can reduce water flow resistance,the application of BNSS resistance reduction method in grooves surface of antiskid tire tread pattern has been investigated for increasing hydroplaning velocity of tire by using computational fluid dynamics(CFD)simulation.Three kinds of BNSS(riblet,convex dome,and dimple concave)are arranged in tire tread grooves to study the water flow resistance effects in grooves with non-smooth characteristics.A tire-water coupled model is established and CFD technique is applied to simulating hydroplaning.The simulation results show that BNSS grooves can reduce water flow resistance and increase mean flow rate by disturbing the eddy movement in boundary layers.The drag forces of riblet and dimple surface are lower and drainage capacity is higher than those of smooth surface under the same void space on tread pattern,but it is not in dome.BNSS is a good way to promote antiskid performance without increasing additional groove space;extra tire-road noise production is therefore avoided due to groove space enlargement.展开更多
The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calcu...The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.展开更多
基金Colleges and Universities in Jiangsu Province Pans to Graduate Research and Innovation,China(No.CXLX13_676)Jiangsu Province Six Talents Peak Project,China(No.2011A031)
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS)can reduce water flow resistance,the application of BNSS resistance reduction method in grooves surface of antiskid tire tread pattern has been investigated for increasing hydroplaning velocity of tire by using computational fluid dynamics(CFD)simulation.Three kinds of BNSS(riblet,convex dome,and dimple concave)are arranged in tire tread grooves to study the water flow resistance effects in grooves with non-smooth characteristics.A tire-water coupled model is established and CFD technique is applied to simulating hydroplaning.The simulation results show that BNSS grooves can reduce water flow resistance and increase mean flow rate by disturbing the eddy movement in boundary layers.The drag forces of riblet and dimple surface are lower and drainage capacity is higher than those of smooth surface under the same void space on tread pattern,but it is not in dome.BNSS is a good way to promote antiskid performance without increasing additional groove space;extra tire-road noise production is therefore avoided due to groove space enlargement.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Joint Construction Project of HIT and Weihai(Grant No.2013DXGJ02)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2015109)
文摘The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.