The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obsta...The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work.展开更多
In recent years, the bionic polarized light compass has been widely studied for the unmanned aerial vehicle navigation. However, it is found from the obtained investigation results that a polarized light compass with ...In recent years, the bionic polarized light compass has been widely studied for the unmanned aerial vehicle navigation. However, it is found from the obtained investigation results that a polarized light compass with a sensitive and high dynamic range polarimeter still provides inferior output precision of the heading angle due to the presence of the noise generating from the compass.The noise is existed not only in the angle of the polarization image acquired by polarimeters but also in the output heading data, which leads to a sharp reduction in the accuracy of a polarized light compass. Herein, we present noise analysis and a novel multiscale transform denoising method of a polarized light compass used for the unmanned aerial vehicle navigation. Specifically, a multiscale principle component analysis utilizing one-dimensional image entropy as classification criterion is directly implemented to suppress the noise in the acquired polarization image. Subsequently, a multiscale time–frequency peak filtering method using the sample entropy as classification criterion is applied for the output heading data so as to further increase the heading measurement accuracy from the denoised image above. These two approaches are combined to significantly reduce the heading error affected by different types of noises. Our experimental results indicate the proposed multiscale transform denoising method exhibits high performance in suppressing the noise of a polarized light compass used for the unmanned aerial vehicle navigation compared to existing prior arts.展开更多
文摘The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work.
基金co-supported by the National Natural Science Foundation of China(No.61973281)The Innovative Research Group Project of National Natural Science Foundation of China(No.51821003)+4 种基金the Aeronautical Science Foundation of China(No.2018ZCU0002)the Program for the Top Young Academic Leaders of Higher Learning Institutions of ShanxiShanxi Postgraduate Innovation Project,China(No.2020BY102)the Young Academic Leaders Foundation in North University of Chinathe Fund for Shanxi‘‘1331 Project”Key Subjects Construction。
文摘In recent years, the bionic polarized light compass has been widely studied for the unmanned aerial vehicle navigation. However, it is found from the obtained investigation results that a polarized light compass with a sensitive and high dynamic range polarimeter still provides inferior output precision of the heading angle due to the presence of the noise generating from the compass.The noise is existed not only in the angle of the polarization image acquired by polarimeters but also in the output heading data, which leads to a sharp reduction in the accuracy of a polarized light compass. Herein, we present noise analysis and a novel multiscale transform denoising method of a polarized light compass used for the unmanned aerial vehicle navigation. Specifically, a multiscale principle component analysis utilizing one-dimensional image entropy as classification criterion is directly implemented to suppress the noise in the acquired polarization image. Subsequently, a multiscale time–frequency peak filtering method using the sample entropy as classification criterion is applied for the output heading data so as to further increase the heading measurement accuracy from the denoised image above. These two approaches are combined to significantly reduce the heading error affected by different types of noises. Our experimental results indicate the proposed multiscale transform denoising method exhibits high performance in suppressing the noise of a polarized light compass used for the unmanned aerial vehicle navigation compared to existing prior arts.