In recent years, multiple applications have emerged in the area of payload transport using unmanned aerial vehicles(UAVs). This has attracted considerable interest among the scientific community, especially the cases ...In recent years, multiple applications have emerged in the area of payload transport using unmanned aerial vehicles(UAVs). This has attracted considerable interest among the scientific community, especially the cases involving one or several rotarywing UAVs. In this context, this work proposes a novel measurement system which can estimate the payload position and the force exerted by it on the UAV. This measurement system is low cost, easy to implement, and can be used either in indoor or outdoor environments(no sensorized laboratory is needed). The measurement system is validated statically and dynamically. In the first test, the estimations obtained by the system are compared with measurements produced by high-precision devices. In the second test, the system is used in real experiments to compare its performance with the ones obtained using known procedures. These experiments allowed to draw interesting conclusions on which future research can be based.展开更多
基金by National Scientific and Technical Research Council(CONICET)the National University of San Juan(UNSJ),both from Argentina.
文摘In recent years, multiple applications have emerged in the area of payload transport using unmanned aerial vehicles(UAVs). This has attracted considerable interest among the scientific community, especially the cases involving one or several rotarywing UAVs. In this context, this work proposes a novel measurement system which can estimate the payload position and the force exerted by it on the UAV. This measurement system is low cost, easy to implement, and can be used either in indoor or outdoor environments(no sensorized laboratory is needed). The measurement system is validated statically and dynamically. In the first test, the estimations obtained by the system are compared with measurements produced by high-precision devices. In the second test, the system is used in real experiments to compare its performance with the ones obtained using known procedures. These experiments allowed to draw interesting conclusions on which future research can be based.