Two nonstoichiometric UAu_(1-x)Sb_2(x = 0.25, 0.1) single crystals are successfully synthesized using a flux method,and their physical properties are comprehensively studied by measuring the dc-magnetization and elect...Two nonstoichiometric UAu_(1-x)Sb_2(x = 0.25, 0.1) single crystals are successfully synthesized using a flux method,and their physical properties are comprehensively studied by measuring the dc-magnetization and electrical resistivity. Evidence for at least three magnetic phases is found in these samples. In zero field, both samples undergo an antiferromagnetic transition at a relatively high temperature, and with further cooling they pass through another antiferromagnetic phase,before reaching a ferromagnetic ground state. Furthermore, the magnetic order can be tuned by varying the site occupation of Au. Such a tunable magnetic order may provide an opportunity for exploring the potential quantum critical behavior in this system.展开更多
Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrow...Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrowband detectors located at wavelength from 650 to 900 nm can meet these requirements;thus,they are the potential solution.In this work,we construct a filter-free and self-power NIR narrowband photodetector based on the structure of n-CdSe/p-Sb_(2)(S_(1-x),Se_(x))_(3)heterojunction,and achieve a narrow spectral response at 735 nm with a full width at half-maximum of 35.3 nm in the detector.Further,the imaging characteristics of the NIR narrowband detector are explored,verifying the ability to narrowband detection and imaging.This filter-free and self-power NIR narrowband detector shows considerable promise in real-life applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874330,11504342,11504341,and U1630248)the National Key R&D Program of China(Grant No.2017YFA0303104)the Science Challenge Project,China(Grant No.TZ2016004)
文摘Two nonstoichiometric UAu_(1-x)Sb_2(x = 0.25, 0.1) single crystals are successfully synthesized using a flux method,and their physical properties are comprehensively studied by measuring the dc-magnetization and electrical resistivity. Evidence for at least three magnetic phases is found in these samples. In zero field, both samples undergo an antiferromagnetic transition at a relatively high temperature, and with further cooling they pass through another antiferromagnetic phase,before reaching a ferromagnetic ground state. Furthermore, the magnetic order can be tuned by varying the site occupation of Au. Such a tunable magnetic order may provide an opportunity for exploring the potential quantum critical behavior in this system.
基金China Postdoctoral Science Foundation Project,Grant/Award Numbers:2020M680101,2021T140233Fundamental Research Funds for the Central Universities,Grant/Award Number:2021XXJS028+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:61725401,61904058,62050039the Graduates'Innovation Fund of Huazhong University of Science and Technology,Grant/Award Number:2021yjsCXCY051the National Key R&D Program of China,Grant/Award Number:2016YFA0204000。
文摘Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrowband detectors located at wavelength from 650 to 900 nm can meet these requirements;thus,they are the potential solution.In this work,we construct a filter-free and self-power NIR narrowband photodetector based on the structure of n-CdSe/p-Sb_(2)(S_(1-x),Se_(x))_(3)heterojunction,and achieve a narrow spectral response at 735 nm with a full width at half-maximum of 35.3 nm in the detector.Further,the imaging characteristics of the NIR narrowband detector are explored,verifying the ability to narrowband detection and imaging.This filter-free and self-power NIR narrowband detector shows considerable promise in real-life applications.