期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
保泛化性能的最优上边界回归模型辨识 被引量:1
1
作者 刘小雍 方华京 +2 位作者 张南庆 李青 刘晶 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2020年第3期454-461,共8页
从控制模型结构复杂性及提高模型辨识精度出发,提出了建模由参数或测量不确定性引起的最优上边界回归模型的一种新方法.首先,将二次规划的支持向量回归(SVR,support vector regression)转化为l1范数的优化问题,用于获取模型结构的稀疏解... 从控制模型结构复杂性及提高模型辨识精度出发,提出了建模由参数或测量不确定性引起的最优上边界回归模型的一种新方法.首先,将二次规划的支持向量回归(SVR,support vector regression)转化为l1范数的优化问题,用于获取模型结构的稀疏解;其次,建立上边界回归模型的约束条件,并将模型的被估输出与实际输出之间的所有逼近误差最小化,即逼近误差的l1范数最小化问题,来提高模型辨识精度;最后,将l1范数的结构风险与逼近误差的l1范数以及上边界回归模型约束条件相结合构成新的优化问题,应用较简单的线性规划对其求解,得到最优上边界回归模型.提出的方法具有如下三个显著特性:1)应用逼近误差的l1范数最小化,可保证模型的建模精度;2)引入SVR架构下的结构风险l1范数,可保证模型的稀疏特性;3)通过提出的方法从建模精度与模型稀疏特性之间取其平衡,可提高模型泛化性能.通过来自测量数据以及模型参数不确定性的实验分析,论证了提出方法的合理性与优越性. 展开更多
关键词 泛化性能 l 1范数结构风险 l 1范数逼近误差 最优上边界回归模型 线性规划
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部