UG NX与SolidWorks是目前机械设计中较常用的三维设计软件,而轴类零件也是机器中很常见的零件。文章多角度比较用两种软件进行轴类零件造型时,绘制草图和运行特征命令的先后顺序不同对造型过程和结果的影响,同时也比较了轴类零件上常见...UG NX与SolidWorks是目前机械设计中较常用的三维设计软件,而轴类零件也是机器中很常见的零件。文章多角度比较用两种软件进行轴类零件造型时,绘制草图和运行特征命令的先后顺序不同对造型过程和结果的影响,同时也比较了轴类零件上常见结构如退刀槽、键槽的不同造型方法。对于两种软件在轴类零件造型中的不足提出了解决办法。展开更多
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t...The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.展开更多
The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retracti...The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water.展开更多
Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method ca...Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.展开更多
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr...A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.展开更多
Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only grou...Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation.展开更多
Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario...Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.展开更多
Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence...Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.展开更多
基金Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos.2019YFE03040002 and 2018YFE0301101)the Talent Project of China National Nuclear Corporation,China (Grant No.2022JZYF-01)。
文摘The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.
基金support from the Programa de Apoyos para la Superación del Personal Académico (DGAPA)the support by the Alexander von Humboldt Foundationpart of the SIREI project num 531062023178 developed at CCT-UV
文摘The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water.
基金supported by the Philosophy and Social Sciences Planning Project of Guangdong Province of China(GD23XGL099)the Guangdong General Universities Young Innovative Talents Project(2023KQNCX247)the Research Project of Shanwei Institute of Technology(SWKT22-019).
文摘Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China (NSFC) under Grants 62001269 and 61960206006+2 种基金the State Key Laboratory of Rail Traffic Control and Safety (under Grants RCS2022K009)Beijing Jiaotong University, the Future Plan Program for Young Scholars of Shandong Universitythe EU H2020 RISE TESTBED2 project under Grant 872172
文摘A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.
基金supported in part by the National Key R&D Program of China(No.2022YFB2902202)in part by the Fundamental Research Funds for the Central Universities(No.2242023K30034)+2 种基金in part by the National Natural Science Foundation of China(No.62171121,U22A2001),in part by the National Natural Science Foundation of China(No.62301144)in part by the National Natural Science Foundation of Jiangsu Province,China(No.BK20211160)in part by the Southeast University Startup Fund(No.4009012301)。
文摘Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation.
基金the Science and Technology Project of State Grid Corporation of China,Grant Number 5108-202304065A-1-1-ZN.
文摘Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.
文摘Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.