Dear Editor,This letter presents a novel data-driven trajectory planning and control scheme for the unmanned ground vehicles(UGVs).A recent work[1]has demonstrated the effectiveness of approximating the optimal state ...Dear Editor,This letter presents a novel data-driven trajectory planning and control scheme for the unmanned ground vehicles(UGVs).A recent work[1]has demonstrated the effectiveness of approximating the optimal state feedback for a nonlinear unmanned system via deep neural network(DNN).展开更多
Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematic...Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.展开更多
This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three...This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three-dimensional space.The basic AP method has a shortcoming of easily plunging into a local optimal solution,which can result in navigation fails.To avoid the local optimum,we improved the AP method with a random scheme.In the improved AP method,random forces are used to make heterogeneous multi-UAVs/UGVs escape from local optimum and achieve global optimum.Experimental results showed that the improved AP method can achieve smoother trajectories and smaller time consumption than the basic AP method and basic potential field method(PFM).展开更多
Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs)have been used in research and development community due to their strong potential in high-risk missions.One of the most important civilian implementatio...Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs)have been used in research and development community due to their strong potential in high-risk missions.One of the most important civilian implementations of UAV/UGV cooperative path planning is delivering medical or emergency supplies during disasters such as wildfires,the focus of this paper.However,wildfires themselves pose risk to the UAVs/UGVs and their paths should be planned to avert the risk as well as complete the mission.In this paper,wildfire growth is simulated using a coupled Partial Differential Equation(PDE)model,widely used in literature for modeling wildfires,in a grid environment with added process and measurement noise.Using principles of Proper Orthogonal Decomposition(POD),and with an appropriate choice of decomposition modes,a low-dimensional equivalent fire growth model is obtained for the deployment of the space-time Kalman Filtering(KF)paradigm for estimation of wildfires using simulated data.The KF paradigm is then used to estimate and predict the propagation of wildfire based on local data obtained from a camera mounted on the UAV.This information is then used to obtain a safe path for the UGV that needs to travel from an initial location to the final position while the UAV’s path is planned to gather information on wildfire.Path planning of both UAV and UGV is carried out using a PDE based method that allows incorporation of threats due to wildfire and other obstacles in the form of risk function.The results from numerical simulation are presented to validate the proposed estimation and path planning methods.展开更多
In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe mult...In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.展开更多
文摘Dear Editor,This letter presents a novel data-driven trajectory planning and control scheme for the unmanned ground vehicles(UGVs).A recent work[1]has demonstrated the effectiveness of approximating the optimal state feedback for a nonlinear unmanned system via deep neural network(DNN).
基金supported by the National Natural Science Foundation of China (Grant Nos. 60975072 and 60604009)Aeronautical Science Foundation of China (Grant No. 2008ZC01006)+4 种基金Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)the Fundamental Research Funds for the Central Universities of China (Grant No. YWF-10-01-A18)Beijing NOVA Program Foundation (Grant No. 2007A017)open Fund of the State Key Laboratory of Virtual Reality Technology and SystemsOpen Fund of the Provincial Key Laboratory for Information Processing Technology, Suzhou University, China (Grant No. KJS1020)
文摘Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072)the National Basic Research Program of China("973" Project)(Grant No.2013CB035503)+3 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)the Top-Notch Young Talents Program of Chinathe Fundamental Research Funds for the Central Universities of Chinathe Aeronautical Foundation of China(Grant No.20115151019)
文摘This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three-dimensional space.The basic AP method has a shortcoming of easily plunging into a local optimal solution,which can result in navigation fails.To avoid the local optimum,we improved the AP method with a random scheme.In the improved AP method,random forces are used to make heterogeneous multi-UAVs/UGVs escape from local optimum and achieve global optimum.Experimental results showed that the improved AP method can achieve smoother trajectories and smaller time consumption than the basic AP method and basic potential field method(PFM).
文摘Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs)have been used in research and development community due to their strong potential in high-risk missions.One of the most important civilian implementations of UAV/UGV cooperative path planning is delivering medical or emergency supplies during disasters such as wildfires,the focus of this paper.However,wildfires themselves pose risk to the UAVs/UGVs and their paths should be planned to avert the risk as well as complete the mission.In this paper,wildfire growth is simulated using a coupled Partial Differential Equation(PDE)model,widely used in literature for modeling wildfires,in a grid environment with added process and measurement noise.Using principles of Proper Orthogonal Decomposition(POD),and with an appropriate choice of decomposition modes,a low-dimensional equivalent fire growth model is obtained for the deployment of the space-time Kalman Filtering(KF)paradigm for estimation of wildfires using simulated data.The KF paradigm is then used to estimate and predict the propagation of wildfire based on local data obtained from a camera mounted on the UAV.This information is then used to obtain a safe path for the UGV that needs to travel from an initial location to the final position while the UAV’s path is planned to gather information on wildfire.Path planning of both UAV and UGV is carried out using a PDE based method that allows incorporation of threats due to wildfire and other obstacles in the form of risk function.The results from numerical simulation are presented to validate the proposed estimation and path planning methods.
文摘In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.