UHF surface velocities radar is developed based on the successful ocean state measuring and analyzing radar system. The design method for UHF radar system is presented. It is designed to operate at UHF channel, and th...UHF surface velocities radar is developed based on the successful ocean state measuring and analyzing radar system. The design method for UHF radar system is presented. It is designed to operate at UHF channel, and the transmit power is under 5W. Maximum range of field test over fresh water can be a kilometer. The field tests at Tangsun River and at Majiatan and Gaobazhou proved that USVR System can be used successfully.展开更多
The observations of Polar Mesosphere Summer Echoes (PMSE) were carried out using the sporadic data of EISCAT UHF radar during the summer season from 2004 to 2015. There were 25 h of PMSE echoes with EISCAT UHF radar. ...The observations of Polar Mesosphere Summer Echoes (PMSE) were carried out using the sporadic data of EISCAT UHF radar during the summer season from 2004 to 2015. There were 25 h of PMSE echoes with EISCAT UHF radar. PMSE echoes were mostly observed only during the early morning and fore-noon time. Moreover, the PMSE echoes are positively correlated with Lymanα radiation, but the correlation is non-significant. The occurrence of PMSE echoes in the early morning and fore-noon time and there positive correlation with Lymanαradiation suggests that solar radiations might be one important factor for PMSE echoes in this study. Very weak positive, but statistically non-significant correlation is found between PMSE occurrence rate and the local geomagneticK-indices. It is found that there is a matching between the variation in the occurrence rate of PMSE and noctilucent clouds (NLC) up to some extent and they are positively correlated. This positive correlation might support the earlier proposed idea about the role of ice particle size in producing PMSE echoes at higher frequencies.展开更多
Ground penetrating radar is a noninvasive electromagnetic geophysical technique for subsurface exploration,characterization and monitoring.Ground penetrating radar is sometimes called georadar, ground probing radar,or...Ground penetrating radar is a noninvasive electromagnetic geophysical technique for subsurface exploration,characterization and monitoring.Ground penetrating radar is sometimes called georadar, ground probing radar,or subsurface radar,earth sounding radar / radar terrestre penetrant,Well Probing Radar,and Borehole Radar.The principles involved are similar to reflection seismology,except that electromagnetic energy is used instead of展开更多
The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump en...The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharrnonic, the altitude of the enhanced ion line is ~3 to ~6 kin lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.展开更多
Outlined in this paper are main technical specifications of the first profiler developed in China. The profiler is composed of a UHF Doppler radar for wind measurement and a microwave radiometer, and preliminarily app...Outlined in this paper are main technical specifications of the first profiler developed in China. The profiler is composed of a UHF Doppler radar for wind measurement and a microwave radiometer, and preliminarily applied in the Beijing-Tianjin-Hebei base of monitoring disastrous weather in 1989—1990. This paper presents the preliminary and valuable results obtained by the instrument in the monitoring of severe storm generating and evolution, showing the potential of this instrument in weather monitoring.展开更多
文摘UHF surface velocities radar is developed based on the successful ocean state measuring and analyzing radar system. The design method for UHF radar system is presented. It is designed to operate at UHF channel, and the transmit power is under 5W. Maximum range of field test over fresh water can be a kilometer. The field tests at Tangsun River and at Majiatan and Gaobazhou proved that USVR System can be used successfully.
基金supported by the National Natural Science Foundation of China (Grant nos. 41104097 and 41304119)Fundamental Research Funds for the Central Universities (Grant nos. ZYGX2015J039, ZYGX2015J037, and ZYGX2015J041)
文摘The observations of Polar Mesosphere Summer Echoes (PMSE) were carried out using the sporadic data of EISCAT UHF radar during the summer season from 2004 to 2015. There were 25 h of PMSE echoes with EISCAT UHF radar. PMSE echoes were mostly observed only during the early morning and fore-noon time. Moreover, the PMSE echoes are positively correlated with Lymanα radiation, but the correlation is non-significant. The occurrence of PMSE echoes in the early morning and fore-noon time and there positive correlation with Lymanαradiation suggests that solar radiations might be one important factor for PMSE echoes in this study. Very weak positive, but statistically non-significant correlation is found between PMSE occurrence rate and the local geomagneticK-indices. It is found that there is a matching between the variation in the occurrence rate of PMSE and noctilucent clouds (NLC) up to some extent and they are positively correlated. This positive correlation might support the earlier proposed idea about the role of ice particle size in producing PMSE echoes at higher frequencies.
文摘Ground penetrating radar is a noninvasive electromagnetic geophysical technique for subsurface exploration,characterization and monitoring.Ground penetrating radar is sometimes called georadar, ground probing radar,or subsurface radar,earth sounding radar / radar terrestre penetrant,Well Probing Radar,and Borehole Radar.The principles involved are similar to reflection seismology,except that electromagnetic energy is used instead of
基金supported by China(China Research Institute of Radiowave Propagation)Finland(Suomen Akatemia of Finland)+3 种基金Japan(the National Institute of Polar Research of Japan and Institutefor Space-Earth Environmental Research at Nagoya University)Norway(Norges Forkningsrad of Norway)Sweden(the Swedish Research Council)the UK(the Natural Environment Research Council)
文摘The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharrnonic, the altitude of the enhanced ion line is ~3 to ~6 kin lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.
文摘Outlined in this paper are main technical specifications of the first profiler developed in China. The profiler is composed of a UHF Doppler radar for wind measurement and a microwave radiometer, and preliminarily applied in the Beijing-Tianjin-Hebei base of monitoring disastrous weather in 1989—1990. This paper presents the preliminary and valuable results obtained by the instrument in the monitoring of severe storm generating and evolution, showing the potential of this instrument in weather monitoring.