Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not...Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not only structures of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also bubbles of water present in the deformed omphacite. The bubbles attach to the dislocation loops which are often connected to one another via a common bubble. Using infrared spectroscopy (IR), two types of hydrous components are identified as hydroxyl and free-water in the omphacite. An analysis of deformation mechanism of microstructure in omphacite suggests that the mineral deformed plastically under UHP metamorphic conditions by dislocation creep through hydrolitic weakening.展开更多
Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) analyses have been performed on omphacite from ultra-high pressure (UHP) eclogites at the locality of Shima, Dabie Mo...Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) analyses have been performed on omphacite from ultra-high pressure (UHP) eclogites at the locality of Shima, Dabie Mountains, China. TEM reveals that the microstructures consist dominantly of dislocation substructures, including free dislocations, loops, tiltwalls, dislocation tangles and subboundaries. They were produced by high-temperature ductile deformation, of which the main mechanism was dislocation creep. Antiphase domain (APD) boundaries are common planar defects; an age of 470 ± 6 Ma for UHP eclogite formation has been obtained from the equiaxial size of APDs in ordered omphacites from Shima, coincident with ages given by single-zircon U-Pb dating (471 ± 2 Ma). HRTEM reveals C2/c and P2/n space groups in different parts of one single omphacite crystal, and no exsolution is observed in the studied samples, which is attributed to rapid cooling. It is suggested that the UHP eclogites underwent a long period of annealing at high temperatures, followed by relatively rapid cooling. These data provide valuable information for the formation and exhumation mechanism of UHP eclogites in the Dabie high-pressure (HP) and UHP metamorphic belt.展开更多
Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhum...Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation(Hermann et al.,2000;Guillot et al.,2001).Under normal subduction geotherms,serpentinites break down just before UHP conditions are reached and therefore most of the exhumed eclogites representing subducted oceanic crust formed under fore-arc conditions.We investigated eclogite blocks enclosed into serpentinites that occur in the southwestern Tianshan oceanic subduction,China.A previous study proved that the serpentinites derive from altered oceanic crust and experienced UHP metamorphism at low temperatures of 510-530°C(Shen et al.,2015).Three relatively fresh eclogite samples were studied in detail.Sample 129-7 shows the retrograde mineral assemblage of amphibole+biotite+albite+chlorite+minor titanite and peak metamorphic relics of omphacite+garnet±chlorite.Sample C107-23 is mainly composed of amphibole+albite+chlorite+zoisite+muscovite+minor titanite as a retrograde assemblage and garnet+phengite as the peak metamorphic relics with omphacite only found as inclusions in garnet.Similar to sample C107-23,sample C11066 preserves large-grained euhedral to subhedral garnet relics with omphacite inclusions,and epidote,diopside,amphibole,muscovite,chlorite,albite and biotite are in the matrix belong to the retrograde assemblage.These three retrograde eclogite samples were modelled using thermodynamic calculations in the Mn NCKFMSHO(Mn O-Na;O-Ca O-K;O-FeO-Mg O-Al;O;-SiO;-H;O-Fe;O;)system.Based on the peak assemblage of omphacite+garnet and the crossing of the grossular and pyrope isopleths in garnet,peak P-T conditions of;60-470oC,28-29 kbar(129-7),450-500oC,28-35 kbar(C107-23),;75-505oC,26-29 kbar(C11066)were calculated.The retrograde assemblages indicate near isothermal decompression resulting in a clockwise P-T evolution of these eclogites.The peak metamorphic pressures at 500°C are well within UHP conditions(coesite stability field)and are within error the same as peak conditions of the host serpentinites(Shen et al.,2015).This provides evidence that eclogites and serpentinites shared the same evolution.We infer that the subducted low-density serpentinites were assembled with the high-density eclogites during subdution and helped the latter to exhume back to the surface.The studied eclogites thus represent rare examples of relics of oceanic crust that was subducted to sub-arc depth.展开更多
Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation
基金funded by the Ministry of Science and Technology of China(No.G19990755-01)the National Natural Science Foundation of China,Postdoctoral Science Foundation of China,the Chinese Academy of Sciences Wong K.C.Post-doctoral Research Award Fund and the State Key Laboratory of Mineral Deposits,Nanjing University
文摘Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not only structures of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also bubbles of water present in the deformed omphacite. The bubbles attach to the dislocation loops which are often connected to one another via a common bubble. Using infrared spectroscopy (IR), two types of hydrous components are identified as hydroxyl and free-water in the omphacite. An analysis of deformation mechanism of microstructure in omphacite suggests that the mineral deformed plastically under UHP metamorphic conditions by dislocation creep through hydrolitic weakening.
基金This work was supported by the Research Fund for the Doctoral Program of Higher Education of China(Project No.9349101)National Natural Science Foundation of China grants 49572146 and 49872069.
文摘Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) analyses have been performed on omphacite from ultra-high pressure (UHP) eclogites at the locality of Shima, Dabie Mountains, China. TEM reveals that the microstructures consist dominantly of dislocation substructures, including free dislocations, loops, tiltwalls, dislocation tangles and subboundaries. They were produced by high-temperature ductile deformation, of which the main mechanism was dislocation creep. Antiphase domain (APD) boundaries are common planar defects; an age of 470 ± 6 Ma for UHP eclogite formation has been obtained from the equiaxial size of APDs in ordered omphacites from Shima, coincident with ages given by single-zircon U-Pb dating (471 ± 2 Ma). HRTEM reveals C2/c and P2/n space groups in different parts of one single omphacite crystal, and no exsolution is observed in the studied samples, which is attributed to rapid cooling. It is suggested that the UHP eclogites underwent a long period of annealing at high temperatures, followed by relatively rapid cooling. These data provide valuable information for the formation and exhumation mechanism of UHP eclogites in the Dabie high-pressure (HP) and UHP metamorphic belt.
文摘Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation(Hermann et al.,2000;Guillot et al.,2001).Under normal subduction geotherms,serpentinites break down just before UHP conditions are reached and therefore most of the exhumed eclogites representing subducted oceanic crust formed under fore-arc conditions.We investigated eclogite blocks enclosed into serpentinites that occur in the southwestern Tianshan oceanic subduction,China.A previous study proved that the serpentinites derive from altered oceanic crust and experienced UHP metamorphism at low temperatures of 510-530°C(Shen et al.,2015).Three relatively fresh eclogite samples were studied in detail.Sample 129-7 shows the retrograde mineral assemblage of amphibole+biotite+albite+chlorite+minor titanite and peak metamorphic relics of omphacite+garnet±chlorite.Sample C107-23 is mainly composed of amphibole+albite+chlorite+zoisite+muscovite+minor titanite as a retrograde assemblage and garnet+phengite as the peak metamorphic relics with omphacite only found as inclusions in garnet.Similar to sample C107-23,sample C11066 preserves large-grained euhedral to subhedral garnet relics with omphacite inclusions,and epidote,diopside,amphibole,muscovite,chlorite,albite and biotite are in the matrix belong to the retrograde assemblage.These three retrograde eclogite samples were modelled using thermodynamic calculations in the Mn NCKFMSHO(Mn O-Na;O-Ca O-K;O-FeO-Mg O-Al;O;-SiO;-H;O-Fe;O;)system.Based on the peak assemblage of omphacite+garnet and the crossing of the grossular and pyrope isopleths in garnet,peak P-T conditions of;60-470oC,28-29 kbar(129-7),450-500oC,28-35 kbar(C107-23),;75-505oC,26-29 kbar(C11066)were calculated.The retrograde assemblages indicate near isothermal decompression resulting in a clockwise P-T evolution of these eclogites.The peak metamorphic pressures at 500°C are well within UHP conditions(coesite stability field)and are within error the same as peak conditions of the host serpentinites(Shen et al.,2015).This provides evidence that eclogites and serpentinites shared the same evolution.We infer that the subducted low-density serpentinites were assembled with the high-density eclogites during subdution and helped the latter to exhume back to the surface.The studied eclogites thus represent rare examples of relics of oceanic crust that was subducted to sub-arc depth.
文摘Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation