An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(...An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(4-HHE)and 4-hydroxy-2-nonenal(4-HNE),in foods.The proposed method exhibited a linear range of 10-1000 ng/mL with a limit of detection of 0.1-2.0 ng/g and a limit of quantification of 0.3-5.0 ng/g.The recovery rates of these typical toxic aldehydes(i.e.,4-HHE,4-HNE)and their d3-labeled analogues were 91.54%-105.12%with a low matrix effect.Furthermore,this proposed method was successfully applied to a real frying system and a simulated digestion system,wherein the contents of 4-HHE and 4-HNE were determined for both.Overall,the obtained results provide strong support for further research into the production of 4-HHE and 4-HNE resulting from foods during oil digestion and frying.展开更多
基金This work was supported by the National Natural Science Fund of China(32001622)the Guangdong Basic and Applied Research Foundation(2021A1515011060)+1 种基金the Fundamental and Applied Basic Research Fund for Young Scholars of Guangdong Province(2019A1515110823)the Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Foods(2021B1212040013).
文摘An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(4-HHE)and 4-hydroxy-2-nonenal(4-HNE),in foods.The proposed method exhibited a linear range of 10-1000 ng/mL with a limit of detection of 0.1-2.0 ng/g and a limit of quantification of 0.3-5.0 ng/g.The recovery rates of these typical toxic aldehydes(i.e.,4-HHE,4-HNE)and their d3-labeled analogues were 91.54%-105.12%with a low matrix effect.Furthermore,this proposed method was successfully applied to a real frying system and a simulated digestion system,wherein the contents of 4-HHE and 4-HNE were determined for both.Overall,the obtained results provide strong support for further research into the production of 4-HHE and 4-HNE resulting from foods during oil digestion and frying.