A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scali...A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.展开更多
As a Chinese English learner,it is really a hard part to recognize well the usage of he,she,and it in the spoken English.Since in Chinese,the pronunciation between he,she,and it is the same one:"ta".Just the...As a Chinese English learner,it is really a hard part to recognize well the usage of he,she,and it in the spoken English.Since in Chinese,the pronunciation between he,she,and it is the same one:"ta".Just the writing is different.However,in English,the meaning of he,she,it is totally different.Sometimes if people choose the wrong one,it is pretty possible to make some misunderstandings since the meaning will be different.展开更多
For the number of complete shock curves of a conservation law with one space variable,Hopf in 1950 for the Burger equation,and Oleinik in 1956 for the general,stated that it is at most countable.In 1979,the present au...For the number of complete shock curves of a conservation law with one space variable,Hopf in 1950 for the Burger equation,and Oleinik in 1956 for the general,stated that it is at most countable.In 1979,the present author published an example to show that the statement of Hopf and Oleinik is wrong.But after so long time,the wrong statement for countability still appeared in some publications,which is at least partly due to that some ones felt difficult to understand Hopf and Oleinik’s proofs being wrong.So,pointing out where they went wrong becomes very necessary.展开更多
文摘A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
文摘As a Chinese English learner,it is really a hard part to recognize well the usage of he,she,and it in the spoken English.Since in Chinese,the pronunciation between he,she,and it is the same one:"ta".Just the writing is different.However,in English,the meaning of he,she,it is totally different.Sometimes if people choose the wrong one,it is pretty possible to make some misunderstandings since the meaning will be different.
基金partially supported by National Basic Research Program of China (Grant No.2011CB302400)National Natural Science Foundation of China (Grant No. 10771206)
文摘For the number of complete shock curves of a conservation law with one space variable,Hopf in 1950 for the Burger equation,and Oleinik in 1956 for the general,stated that it is at most countable.In 1979,the present author published an example to show that the statement of Hopf and Oleinik is wrong.But after so long time,the wrong statement for countability still appeared in some publications,which is at least partly due to that some ones felt difficult to understand Hopf and Oleinik’s proofs being wrong.So,pointing out where they went wrong becomes very necessary.