For an analysis of the oxidation behavior of UO2 nuclear fuel pellet under a loss of water coolant accident in a spent nuclear fuel pool of an LWR, thermodynamic assessments of UO2 oxidation were carried out under var...For an analysis of the oxidation behavior of UO2 nuclear fuel pellet under a loss of water coolant accident in a spent nuclear fuel pool of an LWR, thermodynamic assessments of UO2 oxidation were carried out under various atmospheric conditions. In a steam atmosphere, it was assessed that UO2 would not be fully oxidized into U3O8 due to the relatively lower oxygen partial pressure, while UO2 will be fully oxidized into U3O8 in an air atmosphere. In an air and steam mixture atmosphere, the UO2 oxidation was dominantly affected by the air volumetric fraction, because of the relatively higher oxygen partial pressure of air. In addition, the effect of H2 volumetric fraction on the oxygen partial pressure under a mixture atmosphere was calculated, and it was revealed that UO2 pellet oxidation could be reduced above the critical value of H2 volumetric fraction.展开更多
An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (finite element method) thermal models of enhanced thermal cond...An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (finite element method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. Thus BeO is one of the promising candidates for fabricating two-phase high thermal conductivity ceramic nuclear fuels with UO2. The reactor performance analysis showed that the decrease in centerline temperature was 250-350 K depending on different fabrication methods for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation for the existing and next generation nuclear reactors.展开更多
文摘For an analysis of the oxidation behavior of UO2 nuclear fuel pellet under a loss of water coolant accident in a spent nuclear fuel pool of an LWR, thermodynamic assessments of UO2 oxidation were carried out under various atmospheric conditions. In a steam atmosphere, it was assessed that UO2 would not be fully oxidized into U3O8 due to the relatively lower oxygen partial pressure, while UO2 will be fully oxidized into U3O8 in an air atmosphere. In an air and steam mixture atmosphere, the UO2 oxidation was dominantly affected by the air volumetric fraction, because of the relatively higher oxygen partial pressure of air. In addition, the effect of H2 volumetric fraction on the oxygen partial pressure under a mixture atmosphere was calculated, and it was revealed that UO2 pellet oxidation could be reduced above the critical value of H2 volumetric fraction.
文摘An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (finite element method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. Thus BeO is one of the promising candidates for fabricating two-phase high thermal conductivity ceramic nuclear fuels with UO2. The reactor performance analysis showed that the decrease in centerline temperature was 250-350 K depending on different fabrication methods for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation for the existing and next generation nuclear reactors.