期刊文献+
共找到9,572篇文章
< 1 2 250 >
每页显示 20 50 100
基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究
1
作者 孙己龙 刘勇 +4 位作者 周黎伟 路鑫 侯小龙 王亚琼 王志丰 《图学学报》 CSCD 北大核心 2024年第5期1050-1061,共12页
为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面... 为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面向衬砌裂缝的检测模型DTD-YOLOv8。首先,通过引入DCNv2对YOLOv8主干卷积网络C2f进行融合以实现模型对裂缝形变特征的准确快速感知,同时采用Transformer Decoder对YOLOv8检测头进行替换以实现端到端框架内完整目标检测流程,从而消除因Anchor-free处理模式所带来的计算消耗。采用自建裂缝数据集对SSD,Faster-RCNN,RT-DETR,YOLOv3,YOLOv5,YOLOv8和DTD-YOLOv8的7种检测模型进行对比验证。结果表明:改进模型F1分数和mAP@50值分别为87.05%和89.58%;其中F1分数相较其他6种模型分别提高了14.16%,7.68%,1.55%,41.36%,8.20%和7.40%;mAP@50分别提高了28.84%,15.47%,1.33%,47.65%,10.14%和10.84%。改进模型参数量仅为RT-DETR的三分之一,检测单张图片的速度为16.01 ms,FPS为65.46帧每秒,对比其他模型检测速度得到提升。该模型在面向运营隧道裂缝检测任务需求时能够表现出高效的性能。 展开更多
关键词 隧道工程 目标检测 第2版可变形卷积网络 Transformer decoder 衬砌裂缝
下载PDF
基于混合嵌入和胶囊网络的恶意URL分类模型
2
作者 于晓琪 金彦亮 《工业控制计算机》 2024年第2期114-116,共3页
作为最常见的网络安全威胁之一,恶意URL攻击每年都会造成巨大的经济损失,尽管研究人员已经提出了许多方法来检测恶意URL,但现有方法存在不能充分利用URL提供的有用信息和对URL中的区分性特征提取不充分的问题,导致分类性能不佳。提出了... 作为最常见的网络安全威胁之一,恶意URL攻击每年都会造成巨大的经济损失,尽管研究人员已经提出了许多方法来检测恶意URL,但现有方法存在不能充分利用URL提供的有用信息和对URL中的区分性特征提取不充分的问题,导致分类性能不佳。提出了一种基于混合嵌入和胶囊网络的恶意URL分类模型,引入高速网络和胶囊网络从URL的混合嵌入表示中提取区分性特征,提高了模型的分类性能。在公开数据集ISCX-URL2016上的实验结果表明,该文模型与其他基线方法相比,实现了更好的分类性能,能够有效应对混淆技术的多样性。 展开更多
关键词 恶意url分类 胶囊网络 高速网络 深度学习
下载PDF
Parallel Implementation of the CCSDS Turbo Decoder on GPU
3
作者 Liu Zhanxian Liu Rongke +3 位作者 Zhang Haijun Wang Ning Sun Lei Wang Jianquan 《China Communications》 SCIE CSCD 2024年第10期70-77,共8页
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste... This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively. 展开更多
关键词 CCSDS CUDA GPU parallel decoding turbo codes
下载PDF
Quantized Decoders that Maximize Mutual Information for Polar Codes
4
作者 Zhu Hongfei Cao Zhiwei +1 位作者 Zhao Yuping Li Dou 《China Communications》 SCIE CSCD 2024年第7期125-134,共10页
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem... In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss. 展开更多
关键词 maximize mutual information polar codes QUANTIZATION successive cancellation decoding
下载PDF
网络信息资源归档挑战与对策——基于URL无序性和时效性差异的视角
5
作者 刘冰 《兰台内外》 2024年第16期31-33,共3页
根据西方网络信息资源归档最新理论与实践成果及将异常现象作为示踪剂的研究方法,本研究尝试将网络信息资源归档系统的后台异常现象引导至前台讨论,从URL无序性和时效性差异的研究视角阐释解构、规范URL的必要性以及通过自动代码或搜索... 根据西方网络信息资源归档最新理论与实践成果及将异常现象作为示踪剂的研究方法,本研究尝试将网络信息资源归档系统的后台异常现象引导至前台讨论,从URL无序性和时效性差异的研究视角阐释解构、规范URL的必要性以及通过自动代码或搜索工具对时间戳展开简单聚合或排序的弊端,提出超越以算法为中心的归档逻辑并广泛关注网络基础设施动态与关系互动或对我国网络信息资源归档研究具有一定启示。 展开更多
关键词 网络档案 异常现象 算法 url 时效性
下载PDF
基于ML-Decoder多分量雷达信号脉内调制识别方法
6
作者 王向华 鲜果 龚晓峰 《电子信息对抗技术》 2024年第6期35-42,共8页
在现代电子侦察领域,由于电磁环境复杂,脉冲流密度较大,存在同时接收多个雷达信号的情况,多个雷达信号会在时域和频域出现重叠问题,使得雷达信号的特征变得混淆复杂。雷达信号的脉冲调制识别研究在单分量信号中取得了较好的效果,而在多... 在现代电子侦察领域,由于电磁环境复杂,脉冲流密度较大,存在同时接收多个雷达信号的情况,多个雷达信号会在时域和频域出现重叠问题,使得雷达信号的特征变得混淆复杂。雷达信号的脉冲调制识别研究在单分量信号中取得了较好的效果,而在多分量雷达信号领域中,需要更多创新方法。为了解决上述问题,提出基于多标签解码器网络(Multi-Lable Decoder Network)框架。该网络框架首先用Choi-Williams分布(Choi-Williams Distribution,CWD)将一维信号转变为时频图。然后通过卷积神经网络提取特征,将提取的特征和查询向量一起送进decoder分类器中。decoder分类器通过标签查询的方法匹配特征信息,有效地避免传统卷积神经网络通过全局池化而淹没丰富的特征。用该方法对由六种典型雷达信号随机组成的多分量雷达信号经行调制识别分析,平均识别准确率达到93.9%,优于所对比的其他深度学习算法。 展开更多
关键词 雷达信号识别 解码器 多标签学习 卷积神经网络
下载PDF
基于encoder-decoder框架的城镇污水厂出水水质预测 被引量:1
7
作者 史红伟 陈祺 +1 位作者 王云龙 李鹏程 《中国农村水利水电》 北大核心 2023年第11期93-99,共7页
由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encod... 由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encoder-decoder结构的神经网络预测水质。结果显示,所提结构对LSTM和GRU网络预测能力都有一定提升,对长期预测能力提升更加显著,ED-GRU模型效果最佳,短期预测中的4个出水水质指标均方根误差(RMSE)为0.7551、0.2197、0.0734、0.3146,拟合优度(R2)为0.9013、0.9332、0.9167、0.9532,可以预测出水质局部变化,而长期预测中的4个指标RMSE为1.7204、1.7689、0.4478、0.8316,R2为0.4849、0.5507、0.4502、0.7595,可以预测出水质变化趋势,与顺序结构相比,短期预测RMSE降低10%以上,R2增加2%以上,长期预测RMSE降低25%以上,R2增加15%以上。研究结果表明,基于encoder-decoder结构的神经网络可以对污水厂出水水质进行准确预测,为污水处理工艺改进提供技术支撑。 展开更多
关键词 污水厂出水 encoder-decoder 多指标水质预测 GRU模型
下载PDF
基于时空特征融合的Encoder-Decoder多步4D短期航迹预测
8
作者 石庆研 张泽中 韩萍 《信号处理》 CSCD 北大核心 2023年第11期2037-2048,共12页
航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变... 航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变量都呈现出长短期的时间变化模式,并且这些变量之间还存在着相互依赖的空间信息。为了充分提取这种时空特征,本文提出了基于融合时空特征的编码器-解码器(Spatio-Temporal EncoderDecoder,STED)航迹预测模型。在Encoder中使用门控循环单元(Gated Recurrent Unit,GRU)、卷积神经网络(Convolutional Neural Network,CNN)和注意力机制(Attention,AT)构成的双通道网络来分别提取航迹时空特征,Decoder对时空特征进行拼接融合,并利用GRU对融合特征进行学习和递归输出,实现对未来多步航迹信息的预测。利用真实的航迹数据对算法性能进行验证,实验结果表明,所提STED网络模型能够在未来10 min预测范围内进行高精度的短期航迹预测,相比于LSTM、CNN-LSTM和AT-LSTM等数据驱动航迹预测模型具有更高的精度。此外,STED网络模型预测一个航迹点平均耗时为0.002 s,具有良好的实时性。 展开更多
关键词 4D航迹预测 时空特征 Encoder-decoder 门控循环单元
下载PDF
基于代价敏感学习的恶意URL检测研究 被引量:2
9
作者 蔡勍萌 王健 李鹏博 《信息安全学报》 CSCD 2023年第2期54-65,共12页
随着大数据时代的到来,恶意URL作为Web攻击的媒介渐渐威胁着用户的信息安全。传统的恶意URL检测手段如黑名单检测、签名匹配方法正逐步暴露缺陷,为此本文提出一种基于代价敏感学习策略的恶意URL检测模型。为提高卷积神经网络在恶意网页... 随着大数据时代的到来,恶意URL作为Web攻击的媒介渐渐威胁着用户的信息安全。传统的恶意URL检测手段如黑名单检测、签名匹配方法正逐步暴露缺陷,为此本文提出一种基于代价敏感学习策略的恶意URL检测模型。为提高卷积神经网络在恶意网页检测领域的性能,本文提出将URL数据结合HTTP请求信息作为原始数据样本进行特征提取,解决了单纯URL数据过于简单而造成特征提取困难的问题,通过实验对比了三种编码处理方式,根据实验结果选取了最佳字符编码的处理方式,保证了后续检测模型的效果。同时本文针对URL字符输入的特点,设计了适合URL检测的卷积神经网络模型,为了提取数据深层特征,使用了两层卷积层进行特征提取,其次本文在池化层选择使用BiLSTM算法提取数据的时序特征,同时将该网络的最后一个单元输出达到池化效果,避免了大量的模型计算,保证了模型的检测效率。同时为解决数据样本不均衡问题,在迭代过程中为其分配不同惩罚因子,改进了数据样本初始化权重的分配规则并进行了归一化处理,增加恶意样本在整体误差函数中的比重。实验结果表明本文模型在准确率、召回率以及检测效率上较优于其他主流检测模型,并对于不均衡数据集具有较好的抵抗能力。 展开更多
关键词 深度学习 恶意网页 url检测 代价敏感学习 神经网络
下载PDF
一种基于FTCNN-BILSTM的恶意URLs检测方法 被引量:1
10
作者 张凯洪 柳毅 《计算机应用与软件》 北大核心 2023年第11期295-301,共7页
针对目前恶意URL检测模型中泛化性不够好,准确率不够高的问题,提出一种基于字符嵌入编码的FTCNN-LSTM的恶意URL多分类检测方法。该方法对URL中的每一个字符进行向量化编码,并通过批规范化和定向Dropout对神经网络进行剪枝,并使用Focal L... 针对目前恶意URL检测模型中泛化性不够好,准确率不够高的问题,提出一种基于字符嵌入编码的FTCNN-LSTM的恶意URL多分类检测方法。该方法对URL中的每一个字符进行向量化编码,并通过批规范化和定向Dropout对神经网络进行剪枝,并使用Focal Loss损失函数解决数据集不平衡的问题。实验结果显示,与机器学习训练的模型相比,该方法在多分类上召回率提升了1.73%。该模型在ISCX-URL2016和malicious_phish URL数据集上的多分类平均预测结果均能达到98.63%以上,具有较好的泛化能力。 展开更多
关键词 恶意url检测 卷积神经网络 向量化 Focal Loss
下载PDF
基于Encoder-Decoder注意力网络的异常驾驶行为在线识别方法 被引量:2
11
作者 唐坤 戴语琴 +2 位作者 徐永能 郭唐仪 邵飞 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第8期63-71,共9页
异常驾驶行为是车辆安全运行的重大威胁,其对人员与物资的安全高效投送造成严重危害。以低成本非接触式的手机多传感器数据为基础,通过对驾驶行为特性进行数据分析,提出一种融合Encoder-Decoder深度网络与Attention机制的异常驾驶行为... 异常驾驶行为是车辆安全运行的重大威胁,其对人员与物资的安全高效投送造成严重危害。以低成本非接触式的手机多传感器数据为基础,通过对驾驶行为特性进行数据分析,提出一种融合Encoder-Decoder深度网络与Attention机制的异常驾驶行为的在线识别方法。该方法由基于LSTM(long short-term memory)的Encoder-Decoder、Attention机制与基于SVM(support vector machine)的分类器3个模块构成。该系统识别方法包括:输入编码、注意力学习、特征解码、序列重构、残差计算与驾驶行为分类等6个步骤。该技术方法利用自然驾驶条件下所采集的手机传感器数据进行实验。实验结果表明:①手机多传感器数据融合方法对驾驶行为识别具备有效性;②异常驾驶行为必然会造成数据异常波动;③Attention机制有助于提升模型学习效果,对所提出模型的识别准确率F1-score为0.717,与经典同类模型比较,准确率得到显著提升;④对于汽车异常驾驶行为来说,SVM比Logistic与随机森林算法具有更优越的识别效果。 展开更多
关键词 异常驾驶 深度学习 编码器-解码器 长短时记忆网络 注意力机制
下载PDF
基于双层注意力机制的恶意URL检测 被引量:1
12
作者 赵云泽 蒋牧秋 +1 位作者 董伟 冯志 《网络安全与数据治理》 2023年第2期3-8,共6页
随着信息化技术的不断发展,网络空间中存在的威胁也在不断变化。其中,基于恶意URL的攻击手段层出不穷。针对恶意URL识别与检测问题进行了深入探究,设计并实现了具有双层注意力机制的Bi-LSTM网络模型对恶意URL进行识别和检测,并将其命名... 随着信息化技术的不断发展,网络空间中存在的威胁也在不断变化。其中,基于恶意URL的攻击手段层出不穷。针对恶意URL识别与检测问题进行了深入探究,设计并实现了具有双层注意力机制的Bi-LSTM网络模型对恶意URL进行识别和检测,并将其命名为A2Bi-LSTM。该模型分别在字符级别及单词级别对恶意URL中包含的可疑内容进行注意力权值的计算,进一步提升了恶意URL的识别精度。实验结果表明,A2Bi-LSTM对恶意URL的识别准确率达到97%,相较于传统检测模型有着更好的检测效果,能够有效应对此类攻击威胁,有助于网络空间安全体系的构建。 展开更多
关键词 恶意url 注意力机制 网络安全 深度学习
下载PDF
基于Stacking集成学习的恶意URL检测系统设计与实现 被引量:2
13
作者 张永刚 吕鹏飞 +2 位作者 张悦 姚兴博 冯艳丽 《现代电子技术》 2023年第10期105-109,共5页
针对传统URL检测方法在恶意URL检测时存在的准确率不高、实时性差等问题,提出一种基于Stacking集成学习的算法模型。该模型采用机器学习单一方法中的岭分类、支持向量机、朴素贝叶斯作为初级学习器,采用逻辑回归作为次级学习器,通过初... 针对传统URL检测方法在恶意URL检测时存在的准确率不高、实时性差等问题,提出一种基于Stacking集成学习的算法模型。该模型采用机器学习单一方法中的岭分类、支持向量机、朴素贝叶斯作为初级学习器,采用逻辑回归作为次级学习器,通过初级学习器和次级学习器相结合的双层结构对URL进行检测。使用大量的URL数据集分别对单一方法中的模型和Stacking集成学习方法的模型进行训练,并对每种模型进行评估。评估结果表明,Stacking集成学习的算法模型对恶意URL检测的准确率可达98.75%,与其他模型相比提升0.75%以上。采用Flask作为开发框架,实现了恶意URL检测系统的功能,并对系统进行云端等部署,得到系统根据用户输入的URL链接可以输出URL的检测结果,具有较好的应用价值。 展开更多
关键词 恶意url检测 Stacking集成学习 检测系统设计 算法模型 模型评估 Flask框架
下载PDF
利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像 被引量:2
14
作者 马铭 包乾宗 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期56-64,共9页
利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的... 利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的因素分析并不完备。相较于反射波,由于存在不连续构造而产生的绕射波能量微弱并且相互干涉,同时环境干扰使得绕射波进一步湮没。因此,更高精度的波场分离及单独成像是现阶段基于绕射波超高分辨率处理、解释的重点研究方向。为此,首先针对地球物理勘探中地质异常体的准确定位,以携带高分辨率信息的绕射波为研究对象,系统分析在不同尺度、不同物性参数的异常体情况下绕射波的能量大小及形态特征,掌握绕射波与其他类型波叠加的具体形式;然后根据相应特征性质提出基于深度学习技术的绕射波分离成像方法,即利用Encoder-Decoder框架的空洞卷积网络捕获绕射波场特征,从而实现绕射波分离,基于速度连续性原则构建单纯绕射波场的偏移速度模型并完成最终成像。数据测试表明,该方法最终可满足微小地质异常体高精度识别的需求。 展开更多
关键词 绕射波分离成像 深度神经网络 Encoder-decoder框架 方差最大范数
下载PDF
一种基于BLCNA模型的恶意URL检测技术 被引量:1
15
作者 沈伍强 张金波 +1 位作者 许明杰 杨春松 《微型电脑应用》 2023年第12期62-65,共4页
针对传统方法对恶意URL识别准确度不高、耗时长的问题,提出一种基于注意力机制的神经网络联合模型(BLCNA)来检测恶意URL。提取URL的语义信息和视觉信息进行编码处理,结合双向长短期记忆网络(BiLSTM)和胶囊网络(CapsNet)构建神经网络联... 针对传统方法对恶意URL识别准确度不高、耗时长的问题,提出一种基于注意力机制的神经网络联合模型(BLCNA)来检测恶意URL。提取URL的语义信息和视觉信息进行编码处理,结合双向长短期记忆网络(BiLSTM)和胶囊网络(CapsNet)构建神经网络联合模型来同步捕获语义和视觉特征,利用注意力机制增加关键特征的权重,基于有效特征完成对URL的分类。实验结果表明,所提方法在检测恶意URL检测方面优于其他方法,准确率可以达到99.79%。 展开更多
关键词 电力网络安全 url 注意力机制 特征提取 神经网络
下载PDF
Machine Learning Techniques for Detecting Phishing URL Attacks 被引量:1
16
作者 Diana T.Mosa Mahmoud Y.Shams +2 位作者 Amr AAbohany El-Sayed M.El-kenawy M.Thabet 《Computers, Materials & Continua》 SCIE EI 2023年第4期1271-1290,共20页
Cyber Attacks are critical and destructive to all industry sectors.They affect social engineering by allowing unapproved access to a Personal Computer(PC)that breaks the corrupted system and threatens humans.The defen... Cyber Attacks are critical and destructive to all industry sectors.They affect social engineering by allowing unapproved access to a Personal Computer(PC)that breaks the corrupted system and threatens humans.The defense of security requires understanding the nature of Cyber Attacks,so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks.Cyber-Security proposes appropriate actions that can handle and block attacks.A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information.One of the online security challenges is the enormous number of daily transactions done via phishing sites.As Cyber-Security have a priority for all organizations,Cyber-Security risks are considered part of an organization’s risk management process.This paper presents a survey of different modern machine-learning approaches that handle phishing problems and detect with high-quality accuracy different phishing attacks.A dataset consisting of more than 11000 websites from the Kaggle dataset was utilized and studying the effect of 30 website features and the resulting class label indicating whether or not it is a phishing website(1 or−1).Furthermore,we determined the confusion matrices of Machine Learning models:Neural Networks(NN),Na飗e Bayes,and Adaboost,and the results indicated that the accuracies achieved were 90.23%,92.97%,and 95.43%,respectively. 展开更多
关键词 Cyber security phishing attack url phishing online social networks machine learning
下载PDF
基于CNN-XGBoost的恶意URL检测 被引量:1
17
作者 赵世雄 韩斌 张紫妍 《软件导刊》 2023年第5期150-157,共8页
目前在恶意URL的检测方法中,基于黑名单库的检测方法存在时效性低、防御不住未知攻击的问题,而基于机器学习的检测方法则过度依赖人工提取的特征且需耗费大量人力和时间。针对以上问题,提出一种CNN与XGBoost相结合的检测模型,利用CNN实... 目前在恶意URL的检测方法中,基于黑名单库的检测方法存在时效性低、防御不住未知攻击的问题,而基于机器学习的检测方法则过度依赖人工提取的特征且需耗费大量人力和时间。针对以上问题,提出一种CNN与XGBoost相结合的检测模型,利用CNN实现自动提取特征,通过XGBoost进行分类,采用FWA算法对XGBoost关键参数进行优化,并结合SVM、逻辑回归等多种分类器进行比较。实验结果表明,该模型可以自动提取特征实现主动防御,其精确率达到97.2%,比现有检测模型精确率提高3%~5%。 展开更多
关键词 卷积神经网络 机器学习 恶意url 烟花算法 网络安全
下载PDF
Malicious URL Classification Using Artificial Fish Swarm Optimization and Deep Learning
18
作者 Anwer Mustafa Hilal Aisha Hassan Abdalla Hashim +5 位作者 Heba G.Mohamed Mohamed K.Nour Mashael M.Asiri Ali M.Al-Sharafi Mahmoud Othman Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第1期607-621,共15页
Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era.Malicious Uniform Resource Locators(URLs)can be embedded in email or Twitter and used... Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era.Malicious Uniform Resource Locators(URLs)can be embedded in email or Twitter and used to lure vulnerable internet users to implement malicious data in their systems.This may result in compromised security of the systems,scams,and other such cyberattacks.These attacks hijack huge quantities of the available data,incurring heavy financial loss.At the same time,Machine Learning(ML)and Deep Learning(DL)models paved the way for designing models that can detect malicious URLs accurately and classify them.With this motivation,the current article develops an Artificial Fish Swarm Algorithm(AFSA)with Deep Learning Enabled Malicious URL Detection and Classification(AFSADL-MURLC)model.The presented AFSADL-MURLC model intends to differentiate the malicious URLs from genuine URLs.To attain this,AFSADL-MURLC model initially carries out data preprocessing and makes use of glove-based word embedding technique.In addition,the created vector model is then passed onto Gated Recurrent Unit(GRU)classification to recognize the malicious URLs.Finally,AFSA is applied to the proposed model to enhance the efficiency of GRU model.The proposed AFSADL-MURLC technique was experimentally validated using benchmark dataset sourced from Kaggle repository.The simulation results confirmed the supremacy of the proposed AFSADL-MURLC model over recent approaches under distinct measures. 展开更多
关键词 Malicious url CYBERSECURITY deep learning machine learning metaheuristics gated recurrent unit
下载PDF
Modelling an Efficient URL Phishing Detection Approach Based on a Dense Network Model
19
作者 A.Aldo Tenis R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2625-2641,共17页
The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learn... The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator(URLs)analysis.The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions,which deals with the detection of phishing.Contrarily,the URLs in both classes from the login page due,considering the representation of a real case scenario and the demonstration for obtaining the rate of false-positive with the existing approaches during the legal login pages provides the test having URLs.In addition,some model reduces the accuracy rather than training the base model and testing the latest URLs.In addition,a feature analysis is performed on the present phishing domains to identify various approaches to using the phishers in the campaign.A new dataset called the MUPD dataset is used for evaluation.Lastly,a prediction model,the Dense forward-backwards Long Short Term Memory(LSTM)model(d−FBLSTM),is presented for combining the forward and backward propagation of LSMT to obtain the accuracy of 98.5%on the initiated login URL dataset. 展开更多
关键词 Cyber-attack url phishing attack attention model prediction accuracy
下载PDF
Unifying Convolution and Transformer Decoder for Textile Fiber Identification
20
作者 许罗力 李粉英 常姗 《Journal of Donghua University(English Edition)》 CAS 2023年第4期357-363,共7页
At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images... At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images.Hence,this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features.Firstly,the convolution module extracts fiber features from the input textile surface images.Secondly,these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively.Finally,an asymmetric loss further purifies the extracted fiber representations.Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches. 展开更多
关键词 non-destructive textile fiber identification transformer decoder asymmetric loss
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部