In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones...In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones to extract the features of phishing URLs. Then a machine learning algorithm is applied to obtain the URL classification model from the sample data set training. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. The experiments verify that the combination of the URL features extracted in this paper and the support vector machine (SVM) classification algorithm can achieve a high phishing detection accuracy, and the incremental learning algorithm is also effective.展开更多
In the light of the defect of web vulnerability detection system, combined with the characteristics of high efficient and sharing in the cloud environment, a design proposal is presented based on cloud environment, wh...In the light of the defect of web vulnerability detection system, combined with the characteristics of high efficient and sharing in the cloud environment, a design proposal is presented based on cloud environment, which analyses the key technology of gaining the URL, task allocation and scheduling and the design of attack detection. Experiment shows its feasibility and effectiveness in this paper.展开更多
When evaluating the accessibility of a large website, we rely on sampling methods to reduce the cost of evaluation. This may lead to a biased evaluation when the distribution of checkpoint violations in a website is s...When evaluating the accessibility of a large website, we rely on sampling methods to reduce the cost of evaluation. This may lead to a biased evaluation when the distribution of checkpoint violations in a website is skewed and the selected samples do not provide a good representation of the entire website. To improve sampling quality, stratified sampling methods first cluster web pages in a site and then draw samples from each cluster. In existing stratified sampling methods, however, all the pages in a website need to be analyzed for clustering, causing huge I/O and computation costs. To address this issue, we propose a novel page sampling method based on URL clustering for web accessibility evaluation, namely URLSamp. Using only the URL information for stratified page sampling, URLSamp can efficiently scale to large websites. Meanwhile, by exploiting similarities in URL patterns, URLSamp cluster pages by their generating scripts and can thus effectively detect accessibility problems from web page templates. We use a data set of 45 web sites to validate our method. Experimental results show that our URLSamp method is both effective and efficient for web accessibility evaluation.展开更多
基金The National Basic Research Program of China(973 Program)(No.2010CB328104,2009CB320501)the National Natural Science Foundation of China(No.61272531,61070158,61003257,61060161,61003311,41201486)+4 种基金the National Key Technology R&D Program during the11th Five-Year Plan Period(No.2010BAI88B03)Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092130002)the National Science and Technology Major Project(No.2009ZX03004-004-04)the Foundation of the Key Laboratory of Netw ork and Information Security of Jiangsu Province(No.BM2003201)the Key Laboratory of Computer Netw ork and Information Integration of the Ministry of Education of China(No.93K-9)
文摘In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones to extract the features of phishing URLs. Then a machine learning algorithm is applied to obtain the URL classification model from the sample data set training. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. The experiments verify that the combination of the URL features extracted in this paper and the support vector machine (SVM) classification algorithm can achieve a high phishing detection accuracy, and the incremental learning algorithm is also effective.
文摘In the light of the defect of web vulnerability detection system, combined with the characteristics of high efficient and sharing in the cloud environment, a design proposal is presented based on cloud environment, which analyses the key technology of gaining the URL, task allocation and scheduling and the design of attack detection. Experiment shows its feasibility and effectiveness in this paper.
基金Project supported by the National Natural Science Foundation of China (Nos. 61173185 and 61173186) and the Natural Science Foun- dation of Zhejiang Province, China (No. LZ13F020001)
文摘When evaluating the accessibility of a large website, we rely on sampling methods to reduce the cost of evaluation. This may lead to a biased evaluation when the distribution of checkpoint violations in a website is skewed and the selected samples do not provide a good representation of the entire website. To improve sampling quality, stratified sampling methods first cluster web pages in a site and then draw samples from each cluster. In existing stratified sampling methods, however, all the pages in a website need to be analyzed for clustering, causing huge I/O and computation costs. To address this issue, we propose a novel page sampling method based on URL clustering for web accessibility evaluation, namely URLSamp. Using only the URL information for stratified page sampling, URLSamp can efficiently scale to large websites. Meanwhile, by exploiting similarities in URL patterns, URLSamp cluster pages by their generating scripts and can thus effectively detect accessibility problems from web page templates. We use a data set of 45 web sites to validate our method. Experimental results show that our URLSamp method is both effective and efficient for web accessibility evaluation.