期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
U-Eigenvalues' Inclusion Sets of Complex Tensors
1
作者 Chunlin Yang Hongmei Yao 《Annals of Applied Mathematics》 2023年第1期79-98,共20页
In this paper,we study some inclusion sets of US-eigenvalues and U-eigenvalues based on quantum information.We give three inclusion sets theorems of US-eigenvalues and two inclusion sets theorems of U-eigenvalues.And ... In this paper,we study some inclusion sets of US-eigenvalues and U-eigenvalues based on quantum information.We give three inclusion sets theorems of US-eigenvalues and two inclusion sets theorems of U-eigenvalues.And we obtain the relationships among these inclusion sets.Some numerical examples are shown to illustrate the conclusions. 展开更多
关键词 Complex tensor us-eigenvalue U-eigenvalue inclusion set
原文传递
Computing Geometric Measure of Entanglement for Symmetric Pure States via the Jacobian SDP Relaxation Technique
2
作者 Bing Hua Gu-Yan Ni Meng-Shi Zhang 《Journal of the Operations Research Society of China》 EI CSCD 2017年第1期111-121,共11页
The problem of computing geometric measure of quantum entanglement for symmetric pure states can be regarded as the problem of finding the largest unitary symmetric eigenvalue(US-eigenvalue)for symmetric complex tenso... The problem of computing geometric measure of quantum entanglement for symmetric pure states can be regarded as the problem of finding the largest unitary symmetric eigenvalue(US-eigenvalue)for symmetric complex tensors,which can be taken as a multilinear optimization problem in complex number field.In this paper,we convert the problem of computing the geometric measure of entanglement for symmetric pure states to a real polynomial optimization problem.Then we use Jacobian semidefinite relaxation method to solve it.Some numerical examples are presented. 展开更多
关键词 Symmetric tensors us-eigenvalues Polynomial optimization Semidefinite relaxation Geometric measure of quantum entanglement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部