Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy...Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.展开更多
In the security and privacy fields,Access Control(AC)systems are viewed as the fundamental aspects of networking security mechanisms.Enforcing AC becomes even more challenging when researchers and data analysts have t...In the security and privacy fields,Access Control(AC)systems are viewed as the fundamental aspects of networking security mechanisms.Enforcing AC becomes even more challenging when researchers and data analysts have to analyze complex and distributed Big Data(BD)processing cluster frameworks,which are adopted to manage yottabyte of unstructured sensitive data.For instance,Big Data systems’privacy and security restrictions are most likely to failure due to the malformed AC policy configurations.Furthermore,BD systems were initially developed toped to take care of some of the DB issues to address BD challenges and many of these dealt with the“three Vs”(Velocity,Volume,and Variety)attributes,without planning security consideration,which are considered to be patch work.Some of the BD“three Vs”characteristics,such as distributed computing,fragment,redundant data and node-to node communication,each with its own security challenges,complicate even more the applicability of AC in BD.This paper gives an overview of the latest security and privacy challenges in BD AC systems.Furthermore,it analyzes and compares some of the latest AC research frameworks to reduce privacy and security issues in distributed BD systems,which very few enforce AC in a cost-effective and in a timely manner.Moreover,this work discusses some of the future research methodologies and improvements for BD AC systems.This study is valuable asset for Artificial Intelligence(AI)researchers,DB developers and DB analysts who need the latest AC security and privacy research perspective before using and/or improving a current BD AC framework.展开更多
With the development of cloud computing, the mutual understandability among distributed data access control has become an important issue in the security field of cloud computing. To ensure security, confidentiality a...With the development of cloud computing, the mutual understandability among distributed data access control has become an important issue in the security field of cloud computing. To ensure security, confidentiality and fine-grained data access control of Cloud Data Storage (CDS) environment, we proposed Multi-Agent System (MAS) architecture. This architecture consists of two agents: Cloud Service Provider Agent (CSPA) and Cloud Data Confidentiality Agent (CDConA). CSPA provides a graphical interface to the cloud user that facilitates the access to the services offered by the system. CDConA provides each cloud user by definition and enforcement expressive and flexible access structure as a logic formula over cloud data file attributes. This new access control is named as Formula-Based Cloud Data Access Control (FCDAC). Our proposed FCDAC based on MAS architecture consists of four layers: interface layer, existing access control layer, proposed FCDAC layer and CDS layer as well as four types of entities of Cloud Service Provider (CSP), cloud users, knowledge base and confidentiality policy roles. FCDAC, it’s an access policy determined by our MAS architecture, not by the CSPs. A prototype of our proposed FCDAC scheme is implemented using the Java Agent Development Framework Security (JADE-S). Our results in the practical scenario defined formally in this paper, show the Round Trip Time (RTT) for an agent to travel in our system and measured by the times required for an agent to travel around different number of cloud users before and after implementing FCDAC.展开更多
This paper proposes a security policy model for mandatory access control in class B1 database management system whose level of labeling is tuple. The relation hierarchical data model is extended to multilevel relatio...This paper proposes a security policy model for mandatory access control in class B1 database management system whose level of labeling is tuple. The relation hierarchical data model is extended to multilevel relation hierarchical data model. Based on the multilevel relation hierarchical data model, the concept of upper lower layer relational integrity is presented after we analyze and eliminate the covert channels caused by the database integrity. Two SQL statements are extended to process polyinstantiation in the multilevel secure environment. The system is based on the multilevel relation hierarchical data model and is capable of integratively storing and manipulating multilevel complicated objects ( e.g., multilevel spatial data) and multilevel conventional data ( e.g., integer, real number and character string).展开更多
In the education archive sharing system,when performing homomorphic ciphertext retrieval on the storage server,there are problems such as low security of shared data,confusing parameter management,and weak access cont...In the education archive sharing system,when performing homomorphic ciphertext retrieval on the storage server,there are problems such as low security of shared data,confusing parameter management,and weak access control.This paper proposes an Education Archives Sharing and Access Control(EduASAC)system to solve these problems.The system research goal is to realize the sharing of security parameters,the execution of access control,and the recording of system behaviors based on the blockchain network,ensuring the legitimacy of shared membership and the security of education archives.At the same time,the system can be combined with most homomorphic ciphertext retrieval schemes running on the storage server,making the homomorphic ciphertext retrieval mechanism controllable.This paper focuses on the blockchain access control framework and specifically designs smart contracts that conform to the business logic of the EduASAC system.The former adopts a dual-mode access control mechanism combining Discretionary Access Control(DAC)and Mandatory Access Control(MAC)and improves the tagging mode after user permission verification based on the Authentication and Authorization for Constrained Environments(ACE)authorization framework of Open Authorization(OAuth)2.0;the latter is used in the system to vote on nodes to join requests,define access control policies,execute permission verification processes,store,and share system parameters,and standardize the behavior of member nodes.Finally,the EduASAC system realizes the encryption,storage,retrieval,sharing,and access control processes of education archives.To verify the performance of the system,simulation experiments were conducted.The results show that the EduASAC system can meet the high security needs of education archive sharing and ensure the system’s high throughput,low latency,fast decision-making,and fine-grained access control ability.展开更多
In order to cope with varying protection granularity levels of XML(extensible Markup Language) documents, we propose a TXAC (Two-level XML. Access Control) framework,in which an extended TRBAC ( Temporal Role-Based Ac...In order to cope with varying protection granularity levels of XML(extensible Markup Language) documents, we propose a TXAC (Two-level XML. Access Control) framework,in which an extended TRBAC ( Temporal Role-Based Access Control) approach is proposed to deal withthe dynamic XML data With different system components, LXAC algorithm evaluates access requestsefficiently by appropriate access control policy in dynamic web environment. The method is aflexible and powerful security system offering amulti-level access control solution.展开更多
The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital t...The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital technology.The security and the privacy of users’ images are ensured through reversible datahiding techniques. The efficiency of the existing data hiding techniques did notprovide optimum performance with multiple end nodes. These issues are solvedby using Separable Data Hiding and Adaptive Particle Swarm Optimization(SDHAPSO) algorithm to attain optimal performance. Image encryption, dataembedding, data extraction/image recovery are the main phases of the proposedapproach. DFT is generally used to extract the transform coefficient matrix fromthe original image. DFT coefficients are in float format, which assists in transforming the image to integral format using the round function. After obtainingthe encrypted image by data-hider, additional data embedding is formulated intohigh-frequency coefficients. The proposed SDHAPSO is mainly utilized for performance improvement through optimal pixel location selection within the imagefor secret bits concealment. In addition, the secret data embedding capacityenhancement is focused on image visual quality maintenance. Hence, it isobserved from the simulation results that the proposed SDHAPSO techniqueoffers high-level security outcomes with respect to higher PSNR, security level,lesser MSE and higher correlation than existing techniques. Hence, enhancedsensitive information protection is attained, which improves the overall systemperformance.展开更多
Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, w...Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.展开更多
为解决数据混合存储导致精准查找速度慢、数据未分类分级管理造成安全治理难等问题,构建基于主从多链的数据分类分级访问控制模型,实现数据的分类分级保障与动态安全访问。首先,构建链上链下混合式可信存储模型,以平衡区块链面临的存储...为解决数据混合存储导致精准查找速度慢、数据未分类分级管理造成安全治理难等问题,构建基于主从多链的数据分类分级访问控制模型,实现数据的分类分级保障与动态安全访问。首先,构建链上链下混合式可信存储模型,以平衡区块链面临的存储瓶颈问题;其次,提出主从多链架构,并设计智能合约,将不同隐私程度的数据自动存储于从链;最后,以基于角色的访问控制为基础,构建基于主从多链与策略分级的访问控制(MCLP-RBAC)机制并给出具体访问控制流程设计。在分级访问控制策略下,所提模型的吞吐量稳定在360 TPS(Transactions Per Second)左右。与BC-BLPM方案相比,发送速率与吞吐量之比达到1∶1,具有一定优越性;与无访问策略相比,内存消耗降低35.29%;与传统单链结构相比,内存消耗平均降低52.03%;与数据全部上链的方案相比,平均存储空间缩小36.32%。实验结果表明,所提模型能有效降低存储负担,实现分级安全访问,具有高扩展性,适用于多分类数据的管理。展开更多
Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impa...Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.展开更多
基金Key Research and Development and Promotion Program of Henan Province(No.222102210069)Zhongyuan Science and Technology Innovation Leading Talent Project(224200510003)National Natural Science Foundation of China(No.62102449).
文摘Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.
文摘In the security and privacy fields,Access Control(AC)systems are viewed as the fundamental aspects of networking security mechanisms.Enforcing AC becomes even more challenging when researchers and data analysts have to analyze complex and distributed Big Data(BD)processing cluster frameworks,which are adopted to manage yottabyte of unstructured sensitive data.For instance,Big Data systems’privacy and security restrictions are most likely to failure due to the malformed AC policy configurations.Furthermore,BD systems were initially developed toped to take care of some of the DB issues to address BD challenges and many of these dealt with the“three Vs”(Velocity,Volume,and Variety)attributes,without planning security consideration,which are considered to be patch work.Some of the BD“three Vs”characteristics,such as distributed computing,fragment,redundant data and node-to node communication,each with its own security challenges,complicate even more the applicability of AC in BD.This paper gives an overview of the latest security and privacy challenges in BD AC systems.Furthermore,it analyzes and compares some of the latest AC research frameworks to reduce privacy and security issues in distributed BD systems,which very few enforce AC in a cost-effective and in a timely manner.Moreover,this work discusses some of the future research methodologies and improvements for BD AC systems.This study is valuable asset for Artificial Intelligence(AI)researchers,DB developers and DB analysts who need the latest AC security and privacy research perspective before using and/or improving a current BD AC framework.
文摘With the development of cloud computing, the mutual understandability among distributed data access control has become an important issue in the security field of cloud computing. To ensure security, confidentiality and fine-grained data access control of Cloud Data Storage (CDS) environment, we proposed Multi-Agent System (MAS) architecture. This architecture consists of two agents: Cloud Service Provider Agent (CSPA) and Cloud Data Confidentiality Agent (CDConA). CSPA provides a graphical interface to the cloud user that facilitates the access to the services offered by the system. CDConA provides each cloud user by definition and enforcement expressive and flexible access structure as a logic formula over cloud data file attributes. This new access control is named as Formula-Based Cloud Data Access Control (FCDAC). Our proposed FCDAC based on MAS architecture consists of four layers: interface layer, existing access control layer, proposed FCDAC layer and CDS layer as well as four types of entities of Cloud Service Provider (CSP), cloud users, knowledge base and confidentiality policy roles. FCDAC, it’s an access policy determined by our MAS architecture, not by the CSPs. A prototype of our proposed FCDAC scheme is implemented using the Java Agent Development Framework Security (JADE-S). Our results in the practical scenario defined formally in this paper, show the Round Trip Time (RTT) for an agent to travel in our system and measured by the times required for an agent to travel around different number of cloud users before and after implementing FCDAC.
文摘This paper proposes a security policy model for mandatory access control in class B1 database management system whose level of labeling is tuple. The relation hierarchical data model is extended to multilevel relation hierarchical data model. Based on the multilevel relation hierarchical data model, the concept of upper lower layer relational integrity is presented after we analyze and eliminate the covert channels caused by the database integrity. Two SQL statements are extended to process polyinstantiation in the multilevel secure environment. The system is based on the multilevel relation hierarchical data model and is capable of integratively storing and manipulating multilevel complicated objects ( e.g., multilevel spatial data) and multilevel conventional data ( e.g., integer, real number and character string).
基金supported by the Fundamental Research Funds for the Central Universities.Nos.3282023017,328202251.RL H received the grant.
文摘In the education archive sharing system,when performing homomorphic ciphertext retrieval on the storage server,there are problems such as low security of shared data,confusing parameter management,and weak access control.This paper proposes an Education Archives Sharing and Access Control(EduASAC)system to solve these problems.The system research goal is to realize the sharing of security parameters,the execution of access control,and the recording of system behaviors based on the blockchain network,ensuring the legitimacy of shared membership and the security of education archives.At the same time,the system can be combined with most homomorphic ciphertext retrieval schemes running on the storage server,making the homomorphic ciphertext retrieval mechanism controllable.This paper focuses on the blockchain access control framework and specifically designs smart contracts that conform to the business logic of the EduASAC system.The former adopts a dual-mode access control mechanism combining Discretionary Access Control(DAC)and Mandatory Access Control(MAC)and improves the tagging mode after user permission verification based on the Authentication and Authorization for Constrained Environments(ACE)authorization framework of Open Authorization(OAuth)2.0;the latter is used in the system to vote on nodes to join requests,define access control policies,execute permission verification processes,store,and share system parameters,and standardize the behavior of member nodes.Finally,the EduASAC system realizes the encryption,storage,retrieval,sharing,and access control processes of education archives.To verify the performance of the system,simulation experiments were conducted.The results show that the EduASAC system can meet the high security needs of education archive sharing and ensure the system’s high throughput,low latency,fast decision-making,and fine-grained access control ability.
文摘In order to cope with varying protection granularity levels of XML(extensible Markup Language) documents, we propose a TXAC (Two-level XML. Access Control) framework,in which an extended TRBAC ( Temporal Role-Based Access Control) approach is proposed to deal withthe dynamic XML data With different system components, LXAC algorithm evaluates access requestsefficiently by appropriate access control policy in dynamic web environment. The method is aflexible and powerful security system offering amulti-level access control solution.
文摘The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital technology.The security and the privacy of users’ images are ensured through reversible datahiding techniques. The efficiency of the existing data hiding techniques did notprovide optimum performance with multiple end nodes. These issues are solvedby using Separable Data Hiding and Adaptive Particle Swarm Optimization(SDHAPSO) algorithm to attain optimal performance. Image encryption, dataembedding, data extraction/image recovery are the main phases of the proposedapproach. DFT is generally used to extract the transform coefficient matrix fromthe original image. DFT coefficients are in float format, which assists in transforming the image to integral format using the round function. After obtainingthe encrypted image by data-hider, additional data embedding is formulated intohigh-frequency coefficients. The proposed SDHAPSO is mainly utilized for performance improvement through optimal pixel location selection within the imagefor secret bits concealment. In addition, the secret data embedding capacityenhancement is focused on image visual quality maintenance. Hence, it isobserved from the simulation results that the proposed SDHAPSO techniqueoffers high-level security outcomes with respect to higher PSNR, security level,lesser MSE and higher correlation than existing techniques. Hence, enhancedsensitive information protection is attained, which improves the overall systemperformance.
文摘Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.
文摘为解决数据混合存储导致精准查找速度慢、数据未分类分级管理造成安全治理难等问题,构建基于主从多链的数据分类分级访问控制模型,实现数据的分类分级保障与动态安全访问。首先,构建链上链下混合式可信存储模型,以平衡区块链面临的存储瓶颈问题;其次,提出主从多链架构,并设计智能合约,将不同隐私程度的数据自动存储于从链;最后,以基于角色的访问控制为基础,构建基于主从多链与策略分级的访问控制(MCLP-RBAC)机制并给出具体访问控制流程设计。在分级访问控制策略下,所提模型的吞吐量稳定在360 TPS(Transactions Per Second)左右。与BC-BLPM方案相比,发送速率与吞吐量之比达到1∶1,具有一定优越性;与无访问策略相比,内存消耗降低35.29%;与传统单链结构相比,内存消耗平均降低52.03%;与数据全部上链的方案相比,平均存储空间缩小36.32%。实验结果表明,所提模型能有效降低存储负担,实现分级安全访问,具有高扩展性,适用于多分类数据的管理。
文摘Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.