雷达机动目标跟踪问题中,通常目标运动模型可精确地在直角坐标系下建模,但大多数情形下模型是非线性的,同时在传感器坐标系下所获得目标量测又是直接可用的.通过将无迹变换与最优线性无偏滤波器有机结合,提出一种新的BLUE(Best Linear U...雷达机动目标跟踪问题中,通常目标运动模型可精确地在直角坐标系下建模,但大多数情形下模型是非线性的,同时在传感器坐标系下所获得目标量测又是直接可用的.通过将无迹变换与最优线性无偏滤波器有机结合,提出一种新的BLUE(Best Linear Unbiased Estimator)滤波算法,以便解决上述非线性跟踪问题.首先,该算法利用无迹变换对经由直角坐标系下非线性目标运动模型得到的目标状态及其协方差作出预测,然后在保持传感器坐标系(极坐标系)下所固有的量测误差的同时,直接对它们作出状态估计.在算法推导及Monte-Carlo仿真过程中,将新的BLUE滤波算法和EKF(Extended Kalman Filter)、UKF(Unscented Kalman Filter)滤波算法进行比较,结果表明新算法的有效性和适用性.展开更多
UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现。提出了一种基于方根...UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现。提出了一种基于方根分解形式的UKF算法(SRD-UKF),算法的方根形式增加了数字稳定性和状态协方差的半正定性。通过BOT(bearing of target)仿真实验结果表明,该算法与UKF和PF算法相比具有更好的滤波性能。展开更多
文摘UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现。提出了一种基于方根分解形式的UKF算法(SRD-UKF),算法的方根形式增加了数字稳定性和状态协方差的半正定性。通过BOT(bearing of target)仿真实验结果表明,该算法与UKF和PF算法相比具有更好的滤波性能。