This work summarizes recently published information on the solar UV broadband irradiation of Pernambuco, Northeast of Brazil. We describe the spatial and temporal distribution of solar UV radiation and its relationshi...This work summarizes recently published information on the solar UV broadband irradiation of Pernambuco, Northeast of Brazil. We describe the spatial and temporal distribution of solar UV radiation and its relationship with climatic and geographical conditions. Statistical experimental correlation between solar total irradiation and UV broadband obtained for 03 locations was generalized by the use of Koppen-Geiger Climatic criterium, which was used for mapping the spatial/temporal distribution of broadband UV. The climatological solar radiations used in the correlations were obtained by modeling through satellite and previously verified with terrestrial data. We present one map with the location of the recording stations where the statistical correlations were measured, one annual and 12 monthly contour maps describing monthly daily solar UV radiation levels throughout the territory of Pernambuco. The solar UV irradiation (“broadband”) annual-average daily value in the State of Pernambuco varied from 226 to 268 Wh/m<sup>2</sup>. Seasonal variation of solar UV irradiation in the State of Pernambuco follows, in general and as expected, the climate, relief and seasons of the year. The highest value of monthly solar UV irradiation was observed in the central south region of the state, more precisely in Belém do São Francisco, Floresta, Ibimirim and Buíque in the month of December (summer), with 311.8 Wh/m<sup>2</sup>. The lower value was found in the south Agreste region, in Garanhuns and Caruaru, in the month of June (winter), with 162.2 Wh/m<sup>2</sup>.展开更多
Red-mud is the residue from the Bayer process, in which the iron minerals should be removed before red-mud is used to produce refractory materials. The iron minerals in red-mud were extracted by oxalic acid solution. ...Red-mud is the residue from the Bayer process, in which the iron minerals should be removed before red-mud is used to produce refractory materials. The iron minerals in red-mud were extracted by oxalic acid solution. The content of Fe (calculated in Fe203) in red-mud was reduced from 17.6% to less than 1% after being treated by 1 mol/L oxalic acid solution at 75 ℃ for 2 h. The Fe(Ⅲ) oxalate solution obtained was then irradiated by UV light, resulting in the precipitation of Fe(Ⅱ) oxalate. Under UV photocatalysis, more than 90% of Fe(Ⅲ) oxalate in the extracted solution was transformed into the precipitation of Fe(Ⅱ) oxalate crystallite (fl-FeC2O4·2H2O). The filtrate from the Fe(Ⅱ) oxalate precipitate filtration could be reused in the next cycle. The mechanism ofUV photocatalysis precipitation was also discussed.展开更多
Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolyme...Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.展开更多
An electrochemical sensor for the detection of the natural double-stranded DNA(dsDNA) damage induced by PbSe quantum dots(QDs) under UV irradiation was developed.The biosensing membranes were prepared by successively ...An electrochemical sensor for the detection of the natural double-stranded DNA(dsDNA) damage induced by PbSe quantum dots(QDs) under UV irradiation was developed.The biosensing membranes were prepared by successively assembling 3- mercaptopropionic acid,polycationic poly(diallyldimethyl ammonium) and dsDNA on the surface of the gold electrode.Damage of dsDNA was fulfilled by immersing the sensing membrane electrode in PbSe QDs suspension and illuminating it with an UV lamp. Cyclic voltammetry was utilized to detect dsDNA damage with Co(phen)_3^(3+) as the electroactive probe.The UV irradiation,Pb^(2+) ions liberated from the PbSe QDs under the UV irradiation and the reactive oxygen species(ROS) generated in the presence of the PbSe QDs also under the UV irradiation were the three factors of inducing the dsDNA damage.The synergistic effect of the three factors might dramatically enhance the damage of dsDNA.This electrochemical sensor provided a simple method for detecting DNA damage,and may be used for investigating the DNA damage induced by other QDs.展开更多
A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the pre...A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation. Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm, and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver. UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles. Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized. The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria, staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI.展开更多
A low-cost rout for modification the polyacrylontrile(PAN) precursor fibers was developed.The approach involved pretreatment PAN precursor fibers with UV irradiation for various periods of time before the fibers wer...A low-cost rout for modification the polyacrylontrile(PAN) precursor fibers was developed.The approach involved pretreatment PAN precursor fibers with UV irradiation for various periods of time before the fibers were stabilized.The effect of UV irradiation on the chemical structure,orientation factor,density,crystallite size and morphology of the fibers in the process of stabilization was characterized by use of fourier transform infrared spectroscopy(FTIR),float-sink procedure,X-ray diffraction(XRD),scanning electron microscope(SEM),respectively.The results showed that UV irradiation could increase the density of the fibers in stabilization process.FTIR analysis indicated that the cyclization of nitrile groups was initiated at room temperature by UV irradiation.The transformation of C≡N groups to C=N ones was accelerated in the process of stabilization.The orientation factor of irradiated fibers was also increased.The crystallite size was decreased at first and increased later,and the better irradiation time of UV was 3 min according to the XRD test.SEM analysis indicated that irradiation could decrease the internal and surface defects of the stabilized fibers treated at 300 ℃.展开更多
The effects of magnetic field on the graft ratio and stereoregularity of grafts of PVA-g-MMA in the presence ofbenzophenone during UV irradiation are discussed. By means of IR, it was found that the graft ratio was in...The effects of magnetic field on the graft ratio and stereoregularity of grafts of PVA-g-MMA in the presence ofbenzophenone during UV irradiation are discussed. By means of IR, it was found that the graft ratio was increased with the increment of magnetic field strength. Furthermore, application of relative weak magnetic field of 0.4 Tesla had been shown to substantially enhance the stereo-regularity of graft copolymer. The maximum stereo-regularity appeared when the graft ratio approached to 85% with the magnetic field of 1.2 Tesla (T). The resistance to moisture and heat resistance of the grafted copolymer in the presence of magnetic field were also improved.展开更多
ESR measurements using spin trapping technique were carried out for β-carotene-halobenzene system under UV light irradiation.The ESR spectra observed in the presence and in the absence of β-carotene are markedly dif...ESR measurements using spin trapping technique were carried out for β-carotene-halobenzene system under UV light irradiation.The ESR spectra observed in the presence and in the absence of β-carotene are markedly different.The possible scheme of β-carotene interacting with halogen atom was proposed.展开更多
Photochemical reactions of microcystin-LR, a toxic compound produced by some blue green algae, were investigated. Ultraviolet absorption of microcystin-LR was assessed. Time-dependent density functional theory (TDDFT)...Photochemical reactions of microcystin-LR, a toxic compound produced by some blue green algae, were investigated. Ultraviolet absorption of microcystin-LR was assessed. Time-dependent density functional theory (TDDFT) calculations indicated that absorption peak at 238 nm was mainly due to excitation of electrons from the linear chain structure Adda of microcystin-LR. Irradiation of microcystin-LR with UV light resulted in the reduction of the 238 nm absorption peak and the appearance of a new peak at 300 nm. Density functional theory (DFT) and TDDFT calculations with a model molecule suggested that this 300 nm peak was due to tricyclo-Adda microcystin-LR, an intermediate in photochemical reactions of microcystin-LR. Analysis of the rate of this photochemical reaction showed that it was a first order reaction.展开更多
Ultraviolet (UV) irradiation is proven to be an effective method to reduce aflatoxin in peanut oil, but the changes of peanut oil quality are not clear, especially in storage life. In this study, impacts of UV irr...Ultraviolet (UV) irradiation is proven to be an effective method to reduce aflatoxin in peanut oil, but the changes of peanut oil quality are not clear, especially in storage life. In this study, impacts of UV irradiation treatment on quality of peanut oil were investigated. Acid value, iodine value, oxidative stability and total phenol content that refer to rancidity and oxidation of oil were estimated under 365 nm UV irradiation processing and during different storage time. Results indicated that acid value was increased slightly under irradi-ation and in storage life while iodine value, total phenol content and oxidative stability de-clined weakly. Changes of these quality indexes were all within safe and acceptable levels. It can be confirmed by this study that UV irradiation is a safe strategy for AFB1 detoxification in peanut oil and not influence upon quality and stability of peanut oil.展开更多
In this experiment, Cu<sup>2+</sup> doped ZnO (Cu-ZnO) nanorods materials have been fabricated by hydrothermal method. Cu<sup>2+</sup> ions were doped into ZnO with ratios of 2, 5 and 7 mol.% (...In this experiment, Cu<sup>2+</sup> doped ZnO (Cu-ZnO) nanorods materials have been fabricated by hydrothermal method. Cu<sup>2+</sup> ions were doped into ZnO with ratios of 2, 5 and 7 mol.% (compared to the mole’s number of Zn<sup>2+</sup>). The hexamethylenetetramine (HMTA) solvent used for the fabrication of Cu-ZnO nanorods with the mole ratio of Zn<sup>2+</sup>:HMTA = 1:4. The characteristics of the materials were analyzed by techniques, such as XRD, Raman shift, SEM and UV-vis diffuse reflectance spectra (DRS). The photocatalytic properties of the materials were investigated by the decomposition of the methylene blue (MB) dye solution under ultraviolet light. The results show that the size of Cu-ZnO nanorods was reduced when the Cu<sup>2+</sup> doping ratio increased from 2 mol.% to 7 mol.%. The decomposition efficiency of the MB dye solution reached 92% - 97%, corresponding to the Cu<sup>2+</sup> doping ratio changed from 2 - 7 mol.% (after 40 minutes of ultraviolet irradiation). The highest efficiency for the decomposition of the MB solution was obtained at a Cu<sup>2+</sup> doping ratio of 2 mol.%.展开更多
Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the format...Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.展开更多
With the bimodal mesoporous silica(BMMS)acting as the support and the composite of TiO2 with phosphotungstic acid(PTA)functioning as the active constituent,TiO_(2)-PTA/BMMS was synthesized by the two-step impregnation...With the bimodal mesoporous silica(BMMS)acting as the support and the composite of TiO2 with phosphotungstic acid(PTA)functioning as the active constituent,TiO_(2)-PTA/BMMS was synthesized by the two-step impregnation route.This catalyst was applied in the photocatalytic oxidative desulfurization(PODS)process,with dibenzothiophene serving as the model sulfur compound.PODS proceeds in one pot,in which H_(2)O_(2) acts as the oxidant and methanol plays the role of the solvent.TiO_(2)-PTA/BMMS was characterized by XRD,N_(2) adsorption and desorption,XRF,FTIR,UV-vis,SEM,EDS and TEM techniques.It showed that the introduction of PTA contributes higher order,higher surface area and pore volume to the bimodal mesoporous support.With TiO_(2)-PTA/BMMS used as the catalyst under the UV irradiation,the desulfurization rate can reach 99.6%.This result is obviously higher than that achieved by TiO_(2)/BMMS.The catalyst also has no significant drop in catalytic activity after eight runs of reusing.In such catalytic system,the synergistic effects of this photocatalytic oxidation and the extraction with the methanol serving as the solvent played an indispensable role.展开更多
The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism h...The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...展开更多
The monomer methacrylamido propyl trimethy ammonium chloride( MAPTAC) was copolymerized onto the fiber surface of polypropylene( PP) nonwoven fabric under ultroviole radiation. The weak acid red GN dye adsorption and ...The monomer methacrylamido propyl trimethy ammonium chloride( MAPTAC) was copolymerized onto the fiber surface of polypropylene( PP) nonwoven fabric under ultroviole radiation. The weak acid red GN dye adsorption and adsorptive filtration performance of the resulted PP fabrics were investigated.The results showed that the grafting copolymerization preferred to happen in the inner layer of the fabrics. The water flux of the grafted fabrics decreases with the increase of grafting yield. The collapse of the grafted polymer chains causes the flux increase in acidic condition,or vice versa at alkaline version. The coiling of the polyelectrolyte chains upon the dye adsorption seems to violate the routine assumption of the rigid substrate, and this gets the adsorption energy constant negative. The static adsorption process follows the Lagergren's pseudo-second order kinetic equation. The removals of circa( ca.) 100% of the total permeation volume3 500 mL simulated dye wastewater was reached during permeation.The dye adsorbed fabrics were regenerated by the mixed media of the cationic surfactant / ethanol /water. The grafted fabric assumes stable fabric integrity and stability during permeation,and presents excellent dye adsorption capacity,easy desorption, and repeatable utilization.展开更多
Oxidation of fats and oils during storage causes their degradation and loss of nutritional value and appearance. Electron spin resonance (ESR) is the only method that can be used to directly observe the radicals. In...Oxidation of fats and oils during storage causes their degradation and loss of nutritional value and appearance. Electron spin resonance (ESR) is the only method that can be used to directly observe the radicals. In this study, the authors used an ESR spin-trapping method to study the oxidation of triacylglycerols (TAG) containing different fatty acids (FAs) commonly found in food. The ESR adduct signals were analyzed to study the effect of double bonds and the chain length of the FAs of TAG on oxidation. Oxidation was conducted by applying UV irradiation to TAG by dissolving it in N-tert-buthyl〈t-phenylnitrone (PBN), which trapped the radicals induced in the TAG as an ESR adduct signal. The detection was clearly successful. There were no differences in the spectra of tristearin (18:0) and tripalmitin (16:0); thus, it can be concluded that the length of the carbon chain of the FAs of TAG does not affect the oxidation reactions. However, the ESR spectra of tristearin (18:0), triolein (18:1) and trilinolein (18:3) were clearly different due to the presence/absence of a new peak corresponding to new induced radicals, leading to the conclusion that double bonds play a major role in the oxidation reactions of fats and oils.展开更多
α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solution of eleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was d...α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solution of eleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.展开更多
The effectiveness of chlorine and ultraviolet light at inactivating indigenous microbes in primary treated wastewater was examined in this study. The inactivation rates for somatic colipahge and F-specific bacteriopha...The effectiveness of chlorine and ultraviolet light at inactivating indigenous microbes in primary treated wastewater was examined in this study. The inactivation rates for somatic colipahge and F-specific bacteriophage were less than 2.5 log and 1 log, respectively, at either free chlorine doses of 6, 15 mg/L and 30 mg/L after 30 minutes contact time. However, E. coli and total coliforms were susceptible to chlorination and inactivated more than 4 log within first 15 minutes of contact time at any chlorine dosage tested. In contrast, the inactivation of bacteriophage was increased when increasing UV fluence. At the same disinfection effectiveness against E. coli, UV disinfection was more effective than chlorination against F-specific bacteriophages.展开更多
Light-driven actuators are widely used for smart devices such as soft robots.One of the main challenges for actuators is achieving rapid responsiveness,in addition to ensuring favorable mechanical properties.Herein,we...Light-driven actuators are widely used for smart devices such as soft robots.One of the main challenges for actuators is achieving rapid responsiveness,in addition to ensuring favorable mechanical properties.Herein,we focused on photoresponsive polyurethane(CD-Azo-PU)based on controlling the crystallization of the hard segments in polyurethane(PU)by complexation between azobenzene(Azo)and cyclodextrins(CDs).CD-Azo-PU incorporated polyurethane as the main chain and a 1:2 inclusion complex between Azo andγCD as a movable crosslink point.Upon ultraviolet light(UV,λ=365 nm)irradiation,the photoresponsiveness of CD-Azo-PU bent toward the light source(defined as positive),while that of the linear Azo polyurethane(Azo-LPU)without peracetylatedγ-cyclodextrin diol(TAcγCD-diOH)as a movable crosslinker bent in the direction opposite the light source.The bending rates were determined to be 0.25◦/s for CD-Azo-PU and 0.083◦/s for Azo-LPU,indicating that the bending rate for CD-Azo-PU was faster than that for Azo-LPU.By incorporating movable crosslinks into CD-Azo-PU,we successfully achieved specific photoresponsive actuation with an enhanced rate.展开更多
Short-wavelength ultraviolet(UV)photons adversely affect hydrogenated amorphous silicon thin films,as well as on silicon heterojunction(SHJ)solar cells and modules.This research examines the impact and mechanisms of p...Short-wavelength ultraviolet(UV)photons adversely affect hydrogenated amorphous silicon thin films,as well as on silicon heterojunction(SHJ)solar cells and modules.This research examines the impact and mechanisms of photon-induced performance changes.UV A exposure disrupts Si-H bonds,significantly reducing hydrogen content in both intrinsic and doped hydrogenated amorphous silicon(a-Si:H)films.This disruption impairs the interface passivation effect,leading to the degradation of SHJ solar cells and modules,primarily indicated by a decrease in open-circuit voltage(V_(oc))and fill factor(FF).UV irradiation from the front side of SHJ solar cells reduces V_(oc)and FF by 1.38%and 2.28%,respectively,resulting in a 2.28%efficiency decline.Cells irradiated from the backside show decreases in V_(oc)and FF of approximately 1.96%and 2.73%,respectively,leading to an overall efficiency reduction of approximately 3.58%.However,subsequent light-soaking increases V_(oc)and FF by approximately 0.96%and 1.37%,respectively,for frontside-irradiated cells,achieving an overall efficiency improvement of approximately 2.51%.Thus,light-soaking effectively recovers performance losses caused by UV irradiation in SHJ solar cells.This research clarifies the mechanisms influencing the performance of a-Si:H thin films,SHJ solar cells,and modules under UV irradiation and light-soaking,offering significant contributions towards the development of highly efficient and reliable SHJ devices.展开更多
文摘This work summarizes recently published information on the solar UV broadband irradiation of Pernambuco, Northeast of Brazil. We describe the spatial and temporal distribution of solar UV radiation and its relationship with climatic and geographical conditions. Statistical experimental correlation between solar total irradiation and UV broadband obtained for 03 locations was generalized by the use of Koppen-Geiger Climatic criterium, which was used for mapping the spatial/temporal distribution of broadband UV. The climatological solar radiations used in the correlations were obtained by modeling through satellite and previously verified with terrestrial data. We present one map with the location of the recording stations where the statistical correlations were measured, one annual and 12 monthly contour maps describing monthly daily solar UV radiation levels throughout the territory of Pernambuco. The solar UV irradiation (“broadband”) annual-average daily value in the State of Pernambuco varied from 226 to 268 Wh/m<sup>2</sup>. Seasonal variation of solar UV irradiation in the State of Pernambuco follows, in general and as expected, the climate, relief and seasons of the year. The highest value of monthly solar UV irradiation was observed in the central south region of the state, more precisely in Belém do São Francisco, Floresta, Ibimirim and Buíque in the month of December (summer), with 311.8 Wh/m<sup>2</sup>. The lower value was found in the south Agreste region, in Garanhuns and Caruaru, in the month of June (winter), with 162.2 Wh/m<sup>2</sup>.
基金Project (2010AA101703) supported by the National Hi-tech Research and Development Program of China
文摘Red-mud is the residue from the Bayer process, in which the iron minerals should be removed before red-mud is used to produce refractory materials. The iron minerals in red-mud were extracted by oxalic acid solution. The content of Fe (calculated in Fe203) in red-mud was reduced from 17.6% to less than 1% after being treated by 1 mol/L oxalic acid solution at 75 ℃ for 2 h. The Fe(Ⅲ) oxalate solution obtained was then irradiated by UV light, resulting in the precipitation of Fe(Ⅱ) oxalate. Under UV photocatalysis, more than 90% of Fe(Ⅲ) oxalate in the extracted solution was transformed into the precipitation of Fe(Ⅱ) oxalate crystallite (fl-FeC2O4·2H2O). The filtrate from the Fe(Ⅱ) oxalate precipitate filtration could be reused in the next cycle. The mechanism ofUV photocatalysis precipitation was also discussed.
文摘Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.
基金supported by the National Natural Science Foundation of China(No.20635020,No.20805025,No. 20975057)the Doctoral Foundation of the Ministry of Education of China(No.20060426001)+1 种基金the Foundation of Qingdao City(No.09-1-3-25-jch)the Doctoral Fund of QUST(No.0022278)
文摘An electrochemical sensor for the detection of the natural double-stranded DNA(dsDNA) damage induced by PbSe quantum dots(QDs) under UV irradiation was developed.The biosensing membranes were prepared by successively assembling 3- mercaptopropionic acid,polycationic poly(diallyldimethyl ammonium) and dsDNA on the surface of the gold electrode.Damage of dsDNA was fulfilled by immersing the sensing membrane electrode in PbSe QDs suspension and illuminating it with an UV lamp. Cyclic voltammetry was utilized to detect dsDNA damage with Co(phen)_3^(3+) as the electroactive probe.The UV irradiation,Pb^(2+) ions liberated from the PbSe QDs under the UV irradiation and the reactive oxygen species(ROS) generated in the presence of the PbSe QDs also under the UV irradiation were the three factors of inducing the dsDNA damage.The synergistic effect of the three factors might dramatically enhance the damage of dsDNA.This electrochemical sensor provided a simple method for detecting DNA damage,and may be used for investigating the DNA damage induced by other QDs.
基金the National Natural Science Foundation of China(Nos.50673038 and 20374025)the Fundamental Research Funds for the Central Universities of China(No.JUSRP111A08)
文摘A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation. Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm, and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver. UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles. Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized. The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria, staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI.
基金Funded by the National Natural Science Foundation of China (No. 51073098)the State Key Laboratory of Polymer Material Engineering(Sichuan University) (Nos.KF200901 and 2030925123008)
文摘A low-cost rout for modification the polyacrylontrile(PAN) precursor fibers was developed.The approach involved pretreatment PAN precursor fibers with UV irradiation for various periods of time before the fibers were stabilized.The effect of UV irradiation on the chemical structure,orientation factor,density,crystallite size and morphology of the fibers in the process of stabilization was characterized by use of fourier transform infrared spectroscopy(FTIR),float-sink procedure,X-ray diffraction(XRD),scanning electron microscope(SEM),respectively.The results showed that UV irradiation could increase the density of the fibers in stabilization process.FTIR analysis indicated that the cyclization of nitrile groups was initiated at room temperature by UV irradiation.The transformation of C≡N groups to C=N ones was accelerated in the process of stabilization.The orientation factor of irradiated fibers was also increased.The crystallite size was decreased at first and increased later,and the better irradiation time of UV was 3 min according to the XRD test.SEM analysis indicated that irradiation could decrease the internal and surface defects of the stabilized fibers treated at 300 ℃.
文摘The effects of magnetic field on the graft ratio and stereoregularity of grafts of PVA-g-MMA in the presence ofbenzophenone during UV irradiation are discussed. By means of IR, it was found that the graft ratio was increased with the increment of magnetic field strength. Furthermore, application of relative weak magnetic field of 0.4 Tesla had been shown to substantially enhance the stereo-regularity of graft copolymer. The maximum stereo-regularity appeared when the graft ratio approached to 85% with the magnetic field of 1.2 Tesla (T). The resistance to moisture and heat resistance of the grafted copolymer in the presence of magnetic field were also improved.
文摘ESR measurements using spin trapping technique were carried out for β-carotene-halobenzene system under UV light irradiation.The ESR spectra observed in the presence and in the absence of β-carotene are markedly different.The possible scheme of β-carotene interacting with halogen atom was proposed.
文摘Photochemical reactions of microcystin-LR, a toxic compound produced by some blue green algae, were investigated. Ultraviolet absorption of microcystin-LR was assessed. Time-dependent density functional theory (TDDFT) calculations indicated that absorption peak at 238 nm was mainly due to excitation of electrons from the linear chain structure Adda of microcystin-LR. Irradiation of microcystin-LR with UV light resulted in the reduction of the 238 nm absorption peak and the appearance of a new peak at 300 nm. Density functional theory (DFT) and TDDFT calculations with a model molecule suggested that this 300 nm peak was due to tricyclo-Adda microcystin-LR, an intermediate in photochemical reactions of microcystin-LR. Analysis of the rate of this photochemical reaction showed that it was a first order reaction.
基金This work was supported by the Natural Science Foundation o f China (31401601), National Key Project for Agro-product Quality & Safety Risk Assessment, PRC (GJFP2015007), Special Fund for Grain-scientif-ic Research in the Public Interest (201513006-02).
文摘Ultraviolet (UV) irradiation is proven to be an effective method to reduce aflatoxin in peanut oil, but the changes of peanut oil quality are not clear, especially in storage life. In this study, impacts of UV irradiation treatment on quality of peanut oil were investigated. Acid value, iodine value, oxidative stability and total phenol content that refer to rancidity and oxidation of oil were estimated under 365 nm UV irradiation processing and during different storage time. Results indicated that acid value was increased slightly under irradi-ation and in storage life while iodine value, total phenol content and oxidative stability de-clined weakly. Changes of these quality indexes were all within safe and acceptable levels. It can be confirmed by this study that UV irradiation is a safe strategy for AFB1 detoxification in peanut oil and not influence upon quality and stability of peanut oil.
文摘In this experiment, Cu<sup>2+</sup> doped ZnO (Cu-ZnO) nanorods materials have been fabricated by hydrothermal method. Cu<sup>2+</sup> ions were doped into ZnO with ratios of 2, 5 and 7 mol.% (compared to the mole’s number of Zn<sup>2+</sup>). The hexamethylenetetramine (HMTA) solvent used for the fabrication of Cu-ZnO nanorods with the mole ratio of Zn<sup>2+</sup>:HMTA = 1:4. The characteristics of the materials were analyzed by techniques, such as XRD, Raman shift, SEM and UV-vis diffuse reflectance spectra (DRS). The photocatalytic properties of the materials were investigated by the decomposition of the methylene blue (MB) dye solution under ultraviolet light. The results show that the size of Cu-ZnO nanorods was reduced when the Cu<sup>2+</sup> doping ratio increased from 2 mol.% to 7 mol.%. The decomposition efficiency of the MB dye solution reached 92% - 97%, corresponding to the Cu<sup>2+</sup> doping ratio changed from 2 - 7 mol.% (after 40 minutes of ultraviolet irradiation). The highest efficiency for the decomposition of the MB solution was obtained at a Cu<sup>2+</sup> doping ratio of 2 mol.%.
文摘Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.
基金This work was supported by the Program for Liaoning Excellent Talents in Universities‘LNET’(LJQ2015062)the Program for Science and Technology Agency of Liaoning Province(20170540585)+1 种基金the General Scientific Research Project of Liaoning Provincial Department of Education(L2015296,L2016018)the Science and Technology Planning Project of Fushun(FSKJHT201376).
文摘With the bimodal mesoporous silica(BMMS)acting as the support and the composite of TiO2 with phosphotungstic acid(PTA)functioning as the active constituent,TiO_(2)-PTA/BMMS was synthesized by the two-step impregnation route.This catalyst was applied in the photocatalytic oxidative desulfurization(PODS)process,with dibenzothiophene serving as the model sulfur compound.PODS proceeds in one pot,in which H_(2)O_(2) acts as the oxidant and methanol plays the role of the solvent.TiO_(2)-PTA/BMMS was characterized by XRD,N_(2) adsorption and desorption,XRF,FTIR,UV-vis,SEM,EDS and TEM techniques.It showed that the introduction of PTA contributes higher order,higher surface area and pore volume to the bimodal mesoporous support.With TiO_(2)-PTA/BMMS used as the catalyst under the UV irradiation,the desulfurization rate can reach 99.6%.This result is obviously higher than that achieved by TiO_(2)/BMMS.The catalyst also has no significant drop in catalytic activity after eight runs of reusing.In such catalytic system,the synergistic effects of this photocatalytic oxidation and the extraction with the methanol serving as the solvent played an indispensable role.
基金the National Natural Science Foundation of China (No.20704040).
文摘The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...
基金the Priority Academic Development Program for Textile Science and Textile Engineering of Jiangsu Higher Education Institutions,Chinathe Environmental Protection Department of Jiangsu Province,China(No.2012009)Suzhou Municipal Government,China(No.SYG201202)
文摘The monomer methacrylamido propyl trimethy ammonium chloride( MAPTAC) was copolymerized onto the fiber surface of polypropylene( PP) nonwoven fabric under ultroviole radiation. The weak acid red GN dye adsorption and adsorptive filtration performance of the resulted PP fabrics were investigated.The results showed that the grafting copolymerization preferred to happen in the inner layer of the fabrics. The water flux of the grafted fabrics decreases with the increase of grafting yield. The collapse of the grafted polymer chains causes the flux increase in acidic condition,or vice versa at alkaline version. The coiling of the polyelectrolyte chains upon the dye adsorption seems to violate the routine assumption of the rigid substrate, and this gets the adsorption energy constant negative. The static adsorption process follows the Lagergren's pseudo-second order kinetic equation. The removals of circa( ca.) 100% of the total permeation volume3 500 mL simulated dye wastewater was reached during permeation.The dye adsorbed fabrics were regenerated by the mixed media of the cationic surfactant / ethanol /water. The grafted fabric assumes stable fabric integrity and stability during permeation,and presents excellent dye adsorption capacity,easy desorption, and repeatable utilization.
文摘Oxidation of fats and oils during storage causes their degradation and loss of nutritional value and appearance. Electron spin resonance (ESR) is the only method that can be used to directly observe the radicals. In this study, the authors used an ESR spin-trapping method to study the oxidation of triacylglycerols (TAG) containing different fatty acids (FAs) commonly found in food. The ESR adduct signals were analyzed to study the effect of double bonds and the chain length of the FAs of TAG on oxidation. Oxidation was conducted by applying UV irradiation to TAG by dissolving it in N-tert-buthyl〈t-phenylnitrone (PBN), which trapped the radicals induced in the TAG as an ESR adduct signal. The detection was clearly successful. There were no differences in the spectra of tristearin (18:0) and tripalmitin (16:0); thus, it can be concluded that the length of the carbon chain of the FAs of TAG does not affect the oxidation reactions. However, the ESR spectra of tristearin (18:0), triolein (18:1) and trilinolein (18:3) were clearly different due to the presence/absence of a new peak corresponding to new induced radicals, leading to the conclusion that double bonds play a major role in the oxidation reactions of fats and oils.
基金Project supported by the National Natural Science Foundation of China and Zhong GuanCun Analytical Center.
文摘α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solution of eleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.
文摘The effectiveness of chlorine and ultraviolet light at inactivating indigenous microbes in primary treated wastewater was examined in this study. The inactivation rates for somatic colipahge and F-specific bacteriophage were less than 2.5 log and 1 log, respectively, at either free chlorine doses of 6, 15 mg/L and 30 mg/L after 30 minutes contact time. However, E. coli and total coliforms were susceptible to chlorination and inactivated more than 4 log within first 15 minutes of contact time at any chlorine dosage tested. In contrast, the inactivation of bacteriophage was increased when increasing UV fluence. At the same disinfection effectiveness against E. coli, UV disinfection was more effective than chlorination against F-specific bacteriophages.
基金MEXT of Japan,Grant/Award Numbers:JP19H05714,JP19H05721Core Research for Evolutional Science and Technology(CREST),Grant/Award Number:JPMJCR22L4+4 种基金Establishment of university fellowships toward the creation of science technology innovation,Grant/Award Number:JPMJFS2125Iketani Science and Technology Foundation,Grant/Award Numbers:0341026-A,0351026-AAsahi Glass FoundationYazaki Memorial Foundation for ScienceCOI-NEXT program,Grant/Award Number:JPMJPF2218。
文摘Light-driven actuators are widely used for smart devices such as soft robots.One of the main challenges for actuators is achieving rapid responsiveness,in addition to ensuring favorable mechanical properties.Herein,we focused on photoresponsive polyurethane(CD-Azo-PU)based on controlling the crystallization of the hard segments in polyurethane(PU)by complexation between azobenzene(Azo)and cyclodextrins(CDs).CD-Azo-PU incorporated polyurethane as the main chain and a 1:2 inclusion complex between Azo andγCD as a movable crosslink point.Upon ultraviolet light(UV,λ=365 nm)irradiation,the photoresponsiveness of CD-Azo-PU bent toward the light source(defined as positive),while that of the linear Azo polyurethane(Azo-LPU)without peracetylatedγ-cyclodextrin diol(TAcγCD-diOH)as a movable crosslinker bent in the direction opposite the light source.The bending rates were determined to be 0.25◦/s for CD-Azo-PU and 0.083◦/s for Azo-LPU,indicating that the bending rate for CD-Azo-PU was faster than that for Azo-LPU.By incorporating movable crosslinks into CD-Azo-PU,we successfully achieved specific photoresponsive actuation with an enhanced rate.
基金supported by the Sichuan Science and Technology Program(2023YFG0098 and 2023ZYD0163)National Natural Science Foundation of China(T2322028)+2 种基金Science and Technology Commission of Shanghai Municipality(22ZR1473200)Chengdu Science and Technology Program(2024-JB00-00010-GX)Sichuan Province Key Laboratory of Display Science and Technology。
文摘Short-wavelength ultraviolet(UV)photons adversely affect hydrogenated amorphous silicon thin films,as well as on silicon heterojunction(SHJ)solar cells and modules.This research examines the impact and mechanisms of photon-induced performance changes.UV A exposure disrupts Si-H bonds,significantly reducing hydrogen content in both intrinsic and doped hydrogenated amorphous silicon(a-Si:H)films.This disruption impairs the interface passivation effect,leading to the degradation of SHJ solar cells and modules,primarily indicated by a decrease in open-circuit voltage(V_(oc))and fill factor(FF).UV irradiation from the front side of SHJ solar cells reduces V_(oc)and FF by 1.38%and 2.28%,respectively,resulting in a 2.28%efficiency decline.Cells irradiated from the backside show decreases in V_(oc)and FF of approximately 1.96%and 2.73%,respectively,leading to an overall efficiency reduction of approximately 3.58%.However,subsequent light-soaking increases V_(oc)and FF by approximately 0.96%and 1.37%,respectively,for frontside-irradiated cells,achieving an overall efficiency improvement of approximately 2.51%.Thus,light-soaking effectively recovers performance losses caused by UV irradiation in SHJ solar cells.This research clarifies the mechanisms influencing the performance of a-Si:H thin films,SHJ solar cells,and modules under UV irradiation and light-soaking,offering significant contributions towards the development of highly efficient and reliable SHJ devices.