期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Self-Assembling Peptide as a Candidate Carrier for 5-Fluorouracil 被引量:1
1
作者 陈会 WEI Haiqin +3 位作者 YU Hongchang XING Zhihua MAO Xinze 阮丽萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期739-745,共7页
The potential application of a designed self-assembly peptide CH3CO-Pro-Thr-Phe-CysPhe-Lys-Phe-Glu-Pro-NH2(named as P1) as a carrier of 5-Fluorouracil(5-Fu) for controlled release in vitro was studied. 5-Fluoroura... The potential application of a designed self-assembly peptide CH3CO-Pro-Thr-Phe-CysPhe-Lys-Phe-Glu-Pro-NH2(named as P1) as a carrier of 5-Fluorouracil(5-Fu) for controlled release in vitro was studied. 5-Fluorouracil(5-Fu) was selected as a representative anticancer drug due to its extensive use in treating digestive system cancer and breast cancer. The interaction between P1 and 5-Fu was detected by fluorescent quenching experiments and atomic force microscopy(AFM). The quenching mechanism of 5-Fu and P1 system was dynamic by performing fluorescent quenching experiments at different temperatures. The thermodynamic analysis demonstrated that the interaction between 5-Fu and P1 was hydrophobic interaction. The complexes prepared by the interaction between peptide and 5-Fu appeared as large granular particles of about 20 nm in height under AFM(denoted as5-Fu-P1), 24 times larger than the original 5-Fu particles. According to the results, an interaction model was proposed. Furthermore, 5-Fu-P1 complexes exhibited an efficient controlled release of 5-Fu in vitro. The research suggested that P1 might be a candidate carrier for drug delivery, providing a substitution agent for 5-Fu. 展开更多
关键词 peptide 5-Fluorouracil fluorescence AFM uv spectrophotometer delivery
下载PDF
Study on specific interaction of new ferrocene-substituted carborane conjugates with hemoglobin protein 被引量:1
2
作者 WU ChunHui1,3, YE HongDe2, JIANG Hui1, WANG XueMei1 & YAN Hong2 1State Key Lab of Bioelectronics (Chien-Shiung Wu Lab), Southeast University, Nanjing 210096, China 2State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China 3School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China 《Science China Chemistry》 SCIE EI CAS 2012年第4期594-603,共10页
The interactions between the new organometallic complexes, ferrocenesubstituted dithioocarborane conjugates (denoted as FcSB1, FcSB2 and FcSBCO) and hemoglobin (Hb) are investigated by electrochemistry, fluorescen... The interactions between the new organometallic complexes, ferrocenesubstituted dithioocarborane conjugates (denoted as FcSB1, FcSB2 and FcSBCO) and hemoglobin (Hb) are investigated by electrochemistry, fluorescence and UVvis absorption spectroscopy. The results demonstrate that FcSB1, FcSB2 and FcSBCO can bind to the heme iron center through the replacement of the weakly bound H20/02 in the distal heme pocket of Hb by their sulfur donor atoms, inducing the allosteric change from the R state (oxygenated conformation, relax) to T state (deoxygenated conformation, tense). The binding affinity is in the order of FcSBCO〉FeSB2〉FeSB1. Moreover, the fluorescence study illustrates that the three ferrocenecarborane conjugates differently affect the quarterly and tertiary structures as well as the polarity in the surrounding of the Trp and Tyr residues in Hb. Typically, FcSB2 mainly induces alterations of the microenvironment around the 1337Trp residue which is located on the cql32 interface of Hb. Such distinct influences are attributed to the structural features of FcSB1, FcSB2 and FcSBCO containing hydrophobic ferrocenyl and carboranyl units as well as C=O group. Screening the proteinbinding behavior can signify the potential bioactivity of such molecules and may be helpful in the future development of promising multifunctional metallodrugs. 展开更多
关键词 fluorescence uv vis absorption spectroscopy differential pulse voltammetry biomolecular interaction ferrocene substituted carborane conjugates hemoglobin
原文传递
Effect of nitrogen/phosphorus concentration on algal organic matter generation of the diatom Nitzschia palea:Total indicators and spectroscopic characterization 被引量:2
3
作者 Linlin Han Bingbing Xu +1 位作者 Fei Qi Zhonglin Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第9期130-142,共13页
Critical algal blooms in great lakes increase the level of algal organic matters(AOMs),significantly altering the composition of natural organic matters(NOMs) in freshwater of lake.This study examined the AOM's c... Critical algal blooms in great lakes increase the level of algal organic matters(AOMs),significantly altering the composition of natural organic matters(NOMs) in freshwater of lake.This study examined the AOM's characteristics of Nitzschia palea(N.palea),one kind of the predominant diatom and an important biomarker of water quality in the great lakes of China,to investigate the effect of AOMs on the variation of NOMs in lakes and the process of algal energy.Excitation–emission matrix fluorescence(EEM) spectroscopy,synchronous fluorescence(SF) spectroscopy and deconvolution UV–vis(D-UV) spectroscopy were utilized to characterize AOMs to study the effects of nutrient loading on the composition change of AOMs.From results,it was revealed that the phosphorus is the limiting factor for N.palea's growth and the generation of both total organic carbon and amino acids but the nitrogen is more important for the generation of carbohydrates and proteins.EEM spectra revealed differences in the composition of extracellular organic matter and intracellular organic matter.Regardless of the nitrogen and phosphorus concentrations,aromatic proteins and soluble microbial products were the main components,but the nitrogen concentration had a significant impact on their composition.The SF spectra were used to study the AOMs for the first time and identified that the protein-like substances were the major component of AOMs,creating as a result of aromatic group condensation.The D-UV spectra showed carboxylic acid and esters were the main functional groups in the EOMs,with –OCH_3,–SO_2NH_2,–CN,–NH_2,–O– and –COCH_3functional groups substituting into benzene rings. 展开更多
关键词 Extracellular organic matter Intracellular organic matter Nitzschia palea fluorescence spectroscopy Deconvolution uv–vis spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部