UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during...UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during imprinting process which can cause serious consequences have to be understood for the practical application of the process. This paper investigated the deformation of the soft mold by theoretical analyses, numerical simulations, and experimental studies. We simulated the mold deformation using a simplified model and finite element method. The simulation and the related experimental results agree well with each other. Through the investigation, the mechanism and affected factors of the mold deformation are revealed, and some useful conclusions have been achieved. These results will be valuable in optimizing the imprinting process conditions and mold design for improving the quality of transferred patterns.展开更多
1 Results Our objective is two fold: we (ⅰ) aim at the development of novel patterning methodologies in order to (ⅱ) achieve control over the positioning and alignment of living cells.The patterning of the biointerf...1 Results Our objective is two fold: we (ⅰ) aim at the development of novel patterning methodologies in order to (ⅱ) achieve control over the positioning and alignment of living cells.The patterning of the biointerfaces is carried out both at the micro-and nanometer scale and involve (bio)chemical as well as topographic patterns.The former are relatively easily obtained by patterning techniques adapted from (conventional) soft lithography,e.g.by means of micro-contact printing (μ-CP).The topographic pat...展开更多
基金Supported by the 973 Basics Science Research Program of China (Grant No.2003CB716203)the National Natural Science Foundation of China (Grant No.50775176)the Natural Science Foundation of Shandong Province (Grant No.Y2007F49)
文摘UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during imprinting process which can cause serious consequences have to be understood for the practical application of the process. This paper investigated the deformation of the soft mold by theoretical analyses, numerical simulations, and experimental studies. We simulated the mold deformation using a simplified model and finite element method. The simulation and the related experimental results agree well with each other. Through the investigation, the mechanism and affected factors of the mold deformation are revealed, and some useful conclusions have been achieved. These results will be valuable in optimizing the imprinting process conditions and mold design for improving the quality of transferred patterns.
文摘1 Results Our objective is two fold: we (ⅰ) aim at the development of novel patterning methodologies in order to (ⅱ) achieve control over the positioning and alignment of living cells.The patterning of the biointerfaces is carried out both at the micro-and nanometer scale and involve (bio)chemical as well as topographic patterns.The former are relatively easily obtained by patterning techniques adapted from (conventional) soft lithography,e.g.by means of micro-contact printing (μ-CP).The topographic pat...