A CMOS UV and blue-extended photodiode is presented and fabricated for light detection in the ultraviolet/blue spectral range. An octagon homocentric ring-shaped geometry is used to improve the ultraviolet responsivit...A CMOS UV and blue-extended photodiode is presented and fabricated for light detection in the ultraviolet/blue spectral range. An octagon homocentric ring-shaped geometry is used to improve the ultraviolet responsivity and suppress edge breakdown. This paper has established a two-dimensional responsivity physical model for the presented photodiode and given some numerical analyses. The dead layer effect, which is caused by the high-doping effects and boron redistribution, is considered when analyzing the distribution of the current of the proposed UV and blue-extended photodiode. In the dead layer, the boron doping profile decreases towards the surface. Simulated results illustrate that the responsivity in the UV range is obviously decreased by the effect of the dead layer, while it is not affected in the visible and near-infrared part of the spectrum. The presented photodiode is fabricated and the silicon tested results are given, which agree well with the simulated ones.展开更多
A novel responsivity model, which is based on the solution of transport and continuity equation of carriers generated both in vertical and lateral PN junctions, is proposed for optical properties of stripe-shaped sili...A novel responsivity model, which is based on the solution of transport and continuity equation of carriers generated both in vertical and lateral PN junctions, is proposed for optical properties of stripe-shaped silicon ultraviolet (UV) photodiodes. With this model, the responsivity of the UV photodiode can be estimated. Fabricated in a standard 0.5 μm CMOS process, the measured spectral responsivity of the stripe-shaped UV photodiode shows a good match with the numerical simulation result of the responsivity model at the spectral of UV range. It means that the responsivity model, which is used for stripe-shaped UV photodiode, is reliable.展开更多
The unipolar photocurrent in conventional photodiodes(PDs)based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection.Bipolar photodiodes with photocurrent switchi...The unipolar photocurrent in conventional photodiodes(PDs)based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection.Bipolar photodiodes with photocurrent switching are emerging as a promising solution for obtaining photoelectric devices with unique and attractive functions,such as optical logic operation.Here,we design an all-solid-state chip-scale ultraviolet(UV)PD based on a hybrid GaN heterojunction with engineered bipolar polarized electric field.By introducing the polarization-induced photocurrent switching effect,the photocurrent direction can be switched in response to the wavelength of incident light at 0 V bias.In particular,the photocurrent direction exhibits negative when the irradiation wavelength is less than 315 nm,but positive when the wavelength is longer than 315 nm.The device shows a responsivity of up to−6.7 mA/W at 300 nm and 5.3 mA/W at 340 nm,respectively.In particular,three special logic gates in response to different dual UV light inputs are demonstrated via a single bipolar PD,which may be beneficial for future multifunctional UV photonic integrated devices and systems.展开更多
Ultraviolet(UV) detectors with large photosensitive areas are more advantageous in low-level UV detection applications. In this Letter, high-performance 4 H-SiC p-i-n avalanche photodiodes(APDs) with large active area...Ultraviolet(UV) detectors with large photosensitive areas are more advantageous in low-level UV detection applications. In this Letter, high-performance 4 H-SiC p-i-n avalanche photodiodes(APDs) with large active area(800 μm diameter) are reported. With the optimized epitaxial structure and device fabrication process,a high multiplication gain of 1.4 × 10^6 is obtained for the devices at room temperature, and the dark current is as low as ~10 p A at low reverse voltages. In addition, record external quantum efficiency of 85.5% at 274 nm is achieved, which is the highest value for the reported Si C APDs. Furthermore, the rejection ratio of UV to visible light reaches about 10^4. The excellent performance of our devices indicates a tremendous improvement for largearea SiC APD-based UV detectors. Finally, the UV imaging performance of our fabricated 4 H-SiC p-i-n APDs is also demonstrated for system-level applications.展开更多
A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately...A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.展开更多
基金Project supported by the State Key Program of the National Natural Science Foundation of China(No.61233010)the National Natural Science Foundation of China(No.61274043)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-11-0975)
文摘A CMOS UV and blue-extended photodiode is presented and fabricated for light detection in the ultraviolet/blue spectral range. An octagon homocentric ring-shaped geometry is used to improve the ultraviolet responsivity and suppress edge breakdown. This paper has established a two-dimensional responsivity physical model for the presented photodiode and given some numerical analyses. The dead layer effect, which is caused by the high-doping effects and boron redistribution, is considered when analyzing the distribution of the current of the proposed UV and blue-extended photodiode. In the dead layer, the boron doping profile decreases towards the surface. Simulated results illustrate that the responsivity in the UV range is obviously decreased by the effect of the dead layer, while it is not affected in the visible and near-infrared part of the spectrum. The presented photodiode is fabricated and the silicon tested results are given, which agree well with the simulated ones.
文摘A novel responsivity model, which is based on the solution of transport and continuity equation of carriers generated both in vertical and lateral PN junctions, is proposed for optical properties of stripe-shaped silicon ultraviolet (UV) photodiodes. With this model, the responsivity of the UV photodiode can be estimated. Fabricated in a standard 0.5 μm CMOS process, the measured spectral responsivity of the stripe-shaped UV photodiode shows a good match with the numerical simulation result of the responsivity model at the spectral of UV range. It means that the responsivity model, which is used for stripe-shaped UV photodiode, is reliable.
基金supported by the National Natural Science Foundation of China(Nos.62027818,51861135105,61874034,and 11974320)the National Key Research and Development Program of China(No.2021YFB3202500)International Science and Technology Cooperation Program of Shanghai Science and Technology Innovation Action Plan(No.21520713300).
文摘The unipolar photocurrent in conventional photodiodes(PDs)based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection.Bipolar photodiodes with photocurrent switching are emerging as a promising solution for obtaining photoelectric devices with unique and attractive functions,such as optical logic operation.Here,we design an all-solid-state chip-scale ultraviolet(UV)PD based on a hybrid GaN heterojunction with engineered bipolar polarized electric field.By introducing the polarization-induced photocurrent switching effect,the photocurrent direction can be switched in response to the wavelength of incident light at 0 V bias.In particular,the photocurrent direction exhibits negative when the irradiation wavelength is less than 315 nm,but positive when the wavelength is longer than 315 nm.The device shows a responsivity of up to−6.7 mA/W at 300 nm and 5.3 mA/W at 340 nm,respectively.In particular,three special logic gates in response to different dual UV light inputs are demonstrated via a single bipolar PD,which may be beneficial for future multifunctional UV photonic integrated devices and systems.
基金supported by the National Natural Science Foundation of China(Nos.61604137 and 61674130)
文摘Ultraviolet(UV) detectors with large photosensitive areas are more advantageous in low-level UV detection applications. In this Letter, high-performance 4 H-SiC p-i-n avalanche photodiodes(APDs) with large active area(800 μm diameter) are reported. With the optimized epitaxial structure and device fabrication process,a high multiplication gain of 1.4 × 10^6 is obtained for the devices at room temperature, and the dark current is as low as ~10 p A at low reverse voltages. In addition, record external quantum efficiency of 85.5% at 274 nm is achieved, which is the highest value for the reported Si C APDs. Furthermore, the rejection ratio of UV to visible light reaches about 10^4. The excellent performance of our devices indicates a tremendous improvement for largearea SiC APD-based UV detectors. Finally, the UV imaging performance of our fabricated 4 H-SiC p-i-n APDs is also demonstrated for system-level applications.
文摘A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.