By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%...By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.展开更多
The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, construct...The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.展开更多
Silica is commonly used as an ingredient in the coatings of inkjet papers because of its capability to provide a coating layer structure combining a high pore volume, into which all the applied inkjet ink can transfer...Silica is commonly used as an ingredient in the coatings of inkjet papers because of its capability to provide a coating layer structure combining a high pore volume, into which all the applied inkjet ink can transfer, and a suitable pore size distribution for very quick ink absorption. Nowadays, the production of silica pigment is quite expensive, and therefore, it would be advantageous to find a cheaper raw material source. In this study, the raw material was Greek olivine from magnesite mine sidestreams. The silica pigment was produced at laboratory scale by using nitric acid as a solvent. The target of this work was to clarify how this produced silica pigment is suited for inkjet coating pigments. The coating colors were applied by a laboratory rod coater on fine base paper and white-top kraftliner, and the coated surfaces were printed with a home and office area inkjet printer. The results showed that the produced olivine-based silica pigment has a potential in matt inkjet coatings. The coating of the produced silica pigment increased the print density, decreased the print-through, and diminished the bleeding of fine paper and white-top kraftliner board. However, further development work is needed to improve the pigment brightness to a more acceptable level, and to control the particle size at the nitric acid dissolution.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11274308 and 21401202)
文摘By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.
基金Projects(2014AA052101-3,2014AA052102)supported by the National High Technology Research and Development Program of ChinaProjects(51205389,61105067)supported by the National Natural Science Foundation of China
文摘The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.
基金funding from the European Com-munity’s Seventh Framework Programme
文摘Silica is commonly used as an ingredient in the coatings of inkjet papers because of its capability to provide a coating layer structure combining a high pore volume, into which all the applied inkjet ink can transfer, and a suitable pore size distribution for very quick ink absorption. Nowadays, the production of silica pigment is quite expensive, and therefore, it would be advantageous to find a cheaper raw material source. In this study, the raw material was Greek olivine from magnesite mine sidestreams. The silica pigment was produced at laboratory scale by using nitric acid as a solvent. The target of this work was to clarify how this produced silica pigment is suited for inkjet coating pigments. The coating colors were applied by a laboratory rod coater on fine base paper and white-top kraftliner, and the coated surfaces were printed with a home and office area inkjet printer. The results showed that the produced olivine-based silica pigment has a potential in matt inkjet coatings. The coating of the produced silica pigment increased the print density, decreased the print-through, and diminished the bleeding of fine paper and white-top kraftliner board. However, further development work is needed to improve the pigment brightness to a more acceptable level, and to control the particle size at the nitric acid dissolution.