Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) tec...Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slot-ted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics. The effectiveness of the proposed model is validated by simulation results. The study shows that blocking per-formance of multi-fiber TS-OBS network is acceptable for future Internet services.展开更多
Based on a media access and control(MAC)protocol,an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing(DWDM)networks is proposed in this paper.In order to r...Based on a media access and control(MAC)protocol,an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing(DWDM)networks is proposed in this paper.In order to reduce the cost of nodes,fixed transmitters and receivers are used instead of tunable transmitters and receivers.Two fixed transmitters and many fixed receivers are used in each node in the scheme.The average waiting delay of this scheme is analyzed through mathematics and computer simulation.The result shows that the property of the scheme is almost the same as using tunable transmitter and receiver.Furthermore,if the tuning time of tunable transmitters is taken into account,the performance of the tunable transmitter scheme is poor than this scheme at the average waiting delay and throughput of the network.展开更多
With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical netwo...With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching struc^re based on the tunable wavelength converter (TWC) and the ar- rayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.展开更多
基金Founded by the National Natural Science Foundation of China (No.60502005).
文摘Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slot-ted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics. The effectiveness of the proposed model is validated by simulation results. The study shows that blocking per-formance of multi-fiber TS-OBS network is acceptable for future Internet services.
文摘Based on a media access and control(MAC)protocol,an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing(DWDM)networks is proposed in this paper.In order to reduce the cost of nodes,fixed transmitters and receivers are used instead of tunable transmitters and receivers.Two fixed transmitters and many fixed receivers are used in each node in the scheme.The average waiting delay of this scheme is analyzed through mathematics and computer simulation.The result shows that the property of the scheme is almost the same as using tunable transmitter and receiver.Furthermore,if the tuning time of tunable transmitters is taken into account,the performance of the tunable transmitter scheme is poor than this scheme at the average waiting delay and throughput of the network.
基金supported by the National High Technical Research and Development Program of China(No.2012AA050804)
文摘With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching struc^re based on the tunable wavelength converter (TWC) and the ar- rayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.