期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization 被引量:3
1
作者 Nan Luo Rongle Xu +3 位作者 Min Yang Xing Yuan Hui Zhong Yaobo Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第12期24-35,共12页
A novel inorganic-organic composite membrane,namely poly(vinylidene fluoride) PVDF-glass fiber(PGF) composite membrane,was prepared and reinforced by interfacial ultraviolet(UV)-grafting copolymerization to impr... A novel inorganic-organic composite membrane,namely poly(vinylidene fluoride) PVDF-glass fiber(PGF) composite membrane,was prepared and reinforced by interfacial ultraviolet(UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber.The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling(KH570) as the initiator and the polymer solution with acrylamide monomer(AM) as the grafting block.The Fourier transform infrared spectrometer-attenuated total reflectance(FTIR-ATR) spectra and the energy dispersive X-ray(EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix.The formation mechanisms,permeation,and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions.The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability,and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2 wt.%. 展开更多
关键词 Composite membrane Interfacial uv-grafting Interfacial bonding strength ANTIFOULING
原文传递
Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane 被引量:3
2
作者 Nan Luo Hui Zhong +2 位作者 Min Yang Xing Yuan Yaobo Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期208-217,共10页
Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced pol... Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. 展开更多
关键词 Glass fibers Polymer-matrix composites Coupling agents uv-grafting copolymerization Interfacial strength
原文传递
UV-induced Self-initiated Graft Polymerization of Acrylamide onto Poly(ether ether ketone) 被引量:6
3
作者 CHEN Rui-chao, SUN Hui, LI Ang and XU Guo-zhi College of Materials Science and Mechanical Engineering, National Center for Quality Supervision and Test of Plastic Products, Beijing Technology and Business University, Beijing 100048, P. R. China 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第1期162-165,共4页
Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by... Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characteriza tion of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed. 展开更多
关键词 Poly(ether ether ketone)(PEEK) uv-grafting Surface modification Self-initiation Graft polymerization
下载PDF
Immobilization of Bovine Serum Albumin on Poly(ether ether ketone) for Surface Biocompatibility Improvement 被引量:4
4
作者 SUN Hui CHEN Rui-chao +1 位作者 LI Ang XU Guo-zhi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第2期353-357,共5页
UV-induced graft polymerization of acrylic acid(AA) on poly(ether ether ketone)(PEEK) films was carried out to introduce ―COOH for the subsequent immobilization of bovine serum albumin(BSA).BSA was introduced... UV-induced graft polymerization of acrylic acid(AA) on poly(ether ether ketone)(PEEK) films was carried out to introduce ―COOH for the subsequent immobilization of bovine serum albumin(BSA).BSA was introduced on PEEK surface based on the condensation reaction between ―NH 2 and ―COOH.The modified surface(PEEK-BSA) was characterized by energy-disperse spectrometry(EDS),X-ray photoelectron spectroscopy(XPS),water contact angle measurement and UV spectrum analysis.The contact angle was found to decrease from 104° for the virgin PEEK films to 63° for the BSA-immobilized PEEK films,demonstrating a significant improvement of surface hydrophilicity.Moreover,the appearance of nitrogen on PEEK film confirmed by XPS and EDS indicates the immobilization of BSA on PEEK surface. 展开更多
关键词 Poly(ether ether ketone)(PEEK) uv-grafting Bovine serum albumin immobilization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部