As an emerging groupⅢ–Ⅵsemiconductor two-dimensional(2D)material,gallium selenide(GaSe)has attracted much attention due to its excellent optical and electrical properties.In this work,high-quality epitaxial growth ...As an emerging groupⅢ–Ⅵsemiconductor two-dimensional(2D)material,gallium selenide(GaSe)has attracted much attention due to its excellent optical and electrical properties.In this work,high-quality epitaxial growth of few-layer GaSe nanoflakes with different thickness is achieved via chemical vapor deposition(CVD)method.Due to the non-centrosymmetric structure,the grown GaSe nanoflakes exhibits excellent second harmonic generation(SHG).In addition,the constructed GaSe nanoflake-based photodetector exhibits stable and fast response under visible light excitation,with a rise time of 6 ms and decay time of 10 ms.These achievements clearly demonstrate the possibility of using GaSe nanoflake in the applications of nonlinear optics and(opto)-electronics.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51902227 and 11574241)the Open Project of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China(Grant No.P2020-021).
文摘As an emerging groupⅢ–Ⅵsemiconductor two-dimensional(2D)material,gallium selenide(GaSe)has attracted much attention due to its excellent optical and electrical properties.In this work,high-quality epitaxial growth of few-layer GaSe nanoflakes with different thickness is achieved via chemical vapor deposition(CVD)method.Due to the non-centrosymmetric structure,the grown GaSe nanoflakes exhibits excellent second harmonic generation(SHG).In addition,the constructed GaSe nanoflake-based photodetector exhibits stable and fast response under visible light excitation,with a rise time of 6 ms and decay time of 10 ms.These achievements clearly demonstrate the possibility of using GaSe nanoflake in the applications of nonlinear optics and(opto)-electronics.