期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Investigation of UV–TiO_2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation 被引量:2
1
作者 Yiqing Zhang Lingling Zhou Yongji Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第9期1943-1948,共6页
The inactivation levels of Bacillus subtilis spores for various disinfection processes (ultraviolet (UV), TiO2 and UV-TiO2) were compared. The results showed that the inactivation effect of B. subtilis spores by U... The inactivation levels of Bacillus subtilis spores for various disinfection processes (ultraviolet (UV), TiO2 and UV-TiO2) were compared. The results showed that the inactivation effect of B. subtilis spores by UV treatment alone was far below that for bacteria without endospores. TiO2 alone in the dark, as a control experiment, exhibited almost no inactivation effect. Compared with UV treatment alone, the inactivation effect increased significantly with the addition of TiO2. Increases of the UV irradiance and Ti02 concentration both contributed to the increase of the inactivation effect. Lipid peroxidation was found to be the underlying mechanism of inactivation. Malondialdehyde (MDA), the degradation product of lipid peroxidation, was used as an index to determine the extent of the reaction. The MDA concentration surged surprisingly to 3.24 nmol/mg dry cell with the combination disinfection for 600 see (0.10 mW/cm2 irradiance and 10 mg/L TiO2). In contrast, for UV alone or TiO2 in the dark, the MDA concentration was 0.38 and 0.25 nmol/mg dry cell, respectively, under the same conditions. This indicated that both UV and TiO2 were essential for lipid peroxidation. Changes in cell ultrastructure were observed by transmission electron microscopy. The cell membrane was heavily damaged and cellular contents were completely lysed with the UV-TiO2 process, suggesting that lipid peroxidation was the root of the enhancement in inactivation efficiency. 展开更多
关键词 uvti02bacillus subfilis sporesDisinfectionLipid peroxidation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部