Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
Relative positioning is one of the important techniques in collaborativerobotics, autonomous vehicles, and virtual/augmented reality (VR/AR)applications. Recently, ultra-wideband (UWB) has been utilized to calculatere...Relative positioning is one of the important techniques in collaborativerobotics, autonomous vehicles, and virtual/augmented reality (VR/AR)applications. Recently, ultra-wideband (UWB) has been utilized to calculaterelative position as it does not require a line of sight compared to a camerato calculate the range between two objects with centimeter-level accuracy.However, the single UWB range measurement cannot provide the relativeposition and attitude of any device in three dimensions (3D) because oflacking bearing information. In this paper, we have proposed a UWB-IMUfusion-based relative position system to provide accurate relative positionand attitude between wearable Internet of Things (IoT) devices in 3D. Weintroduce a distributed Euler angle antenna orientationwhich can be equippedwith the mobile structure to enable relative positioning. Moving average andmin-max removing preprocessing filters are introduced to reduce the standarddeviation. The standard multilateration method is modified to calculate therelative position between mobile structures. We combine UWB and IMUmeasurements in a probabilistic framework that enables users to calculatethe relative position between two nodes with less error. We have carried outdifferent experiments to illustrate the advantages of fusing IMU and UWBranges for relative positioning systems. We have achieved a mean accuracy of0.31m for 3D relative positioning in indoor line of sight conditions.展开更多
超宽带(Ultra-Wideband,UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival,UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技...超宽带(Ultra-Wideband,UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival,UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技术和基于ESP32信号强度的权重自适应定位技术,大幅降低了对环境部署的依赖性,提高了定位的精度和稳定性。结合环境先验信息和目标高度的先验知识,构建了先验知识库,采用自适应定位技术,利用多个传感器的信息来调整对不同定位基站的置信度权重,进一步提高了定位精度和鲁棒性。实验结果表明,所提出的系统在视距(Line of Sight,LOS)和非视距(Non Line of Sight,NLOS)环境下都具有较高的定位精度和稳定性,并且仅需要不超过3个基站便可以满足室内环境定位的需求。展开更多
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
基金supported by Samsung Advanced Institute of Technology and partly supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (2022R1F1A1063662).
文摘Relative positioning is one of the important techniques in collaborativerobotics, autonomous vehicles, and virtual/augmented reality (VR/AR)applications. Recently, ultra-wideband (UWB) has been utilized to calculaterelative position as it does not require a line of sight compared to a camerato calculate the range between two objects with centimeter-level accuracy.However, the single UWB range measurement cannot provide the relativeposition and attitude of any device in three dimensions (3D) because oflacking bearing information. In this paper, we have proposed a UWB-IMUfusion-based relative position system to provide accurate relative positionand attitude between wearable Internet of Things (IoT) devices in 3D. Weintroduce a distributed Euler angle antenna orientationwhich can be equippedwith the mobile structure to enable relative positioning. Moving average andmin-max removing preprocessing filters are introduced to reduce the standarddeviation. The standard multilateration method is modified to calculate therelative position between mobile structures. We combine UWB and IMUmeasurements in a probabilistic framework that enables users to calculatethe relative position between two nodes with less error. We have carried outdifferent experiments to illustrate the advantages of fusing IMU and UWBranges for relative positioning systems. We have achieved a mean accuracy of0.31m for 3D relative positioning in indoor line of sight conditions.
文摘超宽带(Ultra-Wideband,UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival,UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技术和基于ESP32信号强度的权重自适应定位技术,大幅降低了对环境部署的依赖性,提高了定位的精度和稳定性。结合环境先验信息和目标高度的先验知识,构建了先验知识库,采用自适应定位技术,利用多个传感器的信息来调整对不同定位基站的置信度权重,进一步提高了定位精度和鲁棒性。实验结果表明,所提出的系统在视距(Line of Sight,LOS)和非视距(Non Line of Sight,NLOS)环境下都具有较高的定位精度和稳定性,并且仅需要不超过3个基站便可以满足室内环境定位的需求。