UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable ti...UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.展开更多
Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirem...Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization.展开更多
The extremely high sampling rate is a challenge for ultra-wideband (UWB) communication. In this paper, we study the compressed sensing (CS) based impulse radio UWB (IR-UWB) signal detection and propose an IR-UWB signa...The extremely high sampling rate is a challenge for ultra-wideband (UWB) communication. In this paper, we study the compressed sensing (CS) based impulse radio UWB (IR-UWB) signal detection and propose an IR-UWB signal detection algorithm based on compressive sampling matching pursuit (CoSaMP). The proposed algorithm relies on the fact that UWB received signal is sparse in the time domain. The new algorithm can significantly reduce the sampling rate required by the detection and provides a better performance in case of the low signal-to-noise ratio when comparing with the existing matching pursuit (MP) based detection algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm.展开更多
超宽带(Ultra-Wideband,UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival,UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技...超宽带(Ultra-Wideband,UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival,UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技术和基于ESP32信号强度的权重自适应定位技术,大幅降低了对环境部署的依赖性,提高了定位的精度和稳定性。结合环境先验信息和目标高度的先验知识,构建了先验知识库,采用自适应定位技术,利用多个传感器的信息来调整对不同定位基站的置信度权重,进一步提高了定位精度和鲁棒性。实验结果表明,所提出的系统在视距(Line of Sight,LOS)和非视距(Non Line of Sight,NLOS)环境下都具有较高的定位精度和稳定性,并且仅需要不超过3个基站便可以满足室内环境定位的需求。展开更多
对于高时间分辨率的超宽带(ultra wideband,UWB)信号来说,在测距应用中主要通过估计信号到达时间(time of arrival,TOA)来计算距离。文章提出了一种基于动态阈值检测的TOA估计算法以提高测距精度并降低算法复杂度。对接收方收到的匹配...对于高时间分辨率的超宽带(ultra wideband,UWB)信号来说,在测距应用中主要通过估计信号到达时间(time of arrival,TOA)来计算距离。文章提出了一种基于动态阈值检测的TOA估计算法以提高测距精度并降低算法复杂度。对接收方收到的匹配滤波输出脉冲进行峰值检测,确定直达单径(direct path,DP)的检测区间;设定一个能够反映出信号和信道特性的联合度量参数,根据该参数的不同设置相应的最佳阈值因子,在检测区间中通过阈值检测搜索DP精确位置对应的时刻,得到TOA的估计值。仿真采用IEEE802.15.4a标准信道,其结果表明所提算法适用于不同信噪比和延时特性的信道,并兼顾运算复杂度与算法精度。展开更多
本文针对动态信噪比环境超宽带(UWB,Ultra WideBand)信号的非相干捕获,提出了一种基于遗传算法的信号捕获方案.以遗传算法结合在线估计接收信噪比,搜索积分窗口长度与定时位置的参数组合,实现系统要求的比特错误概率.该方法解决了传统...本文针对动态信噪比环境超宽带(UWB,Ultra WideBand)信号的非相干捕获,提出了一种基于遗传算法的信号捕获方案.以遗传算法结合在线估计接收信噪比,搜索积分窗口长度与定时位置的参数组合,实现系统要求的比特错误概率.该方法解决了传统捕获方案在未知信噪比条件下积分长度无法择优选取以及捕获门限难于设定的问题.仿真结果表明,基于遗传算法的二维参数捕获方法与传统Look and Jump by Ksteps算法相比有效的提高了未知信噪比条件下的系统捕获性能,拓展了UWB非相干系统的应用范围.展开更多
基金This research is sponsored by National Natural Science Foundation of China,Special Fund of Scientific Instruments:The studyand development of flameproof ground penetrating radar (50127402).
文摘UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.
基金supported by National science foundation(No. 60772035): Key technique study on heterogeneous network convergenceDoctoral grant(No.20070004010)s: Study on cross layer design for heterogeneous network convergence+1 种基金National 863 Hi-Tech Projects(No.2007AA01Z277): Pa-rameter design based electromagnetic compatibility study in cognitive radio communication systemNational science foundation(No. 60830001): Wireless communication fundamentals and key techniuqes for high speed rail way control and safety data transmission
文摘Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization.
文摘The extremely high sampling rate is a challenge for ultra-wideband (UWB) communication. In this paper, we study the compressed sensing (CS) based impulse radio UWB (IR-UWB) signal detection and propose an IR-UWB signal detection algorithm based on compressive sampling matching pursuit (CoSaMP). The proposed algorithm relies on the fact that UWB received signal is sparse in the time domain. The new algorithm can significantly reduce the sampling rate required by the detection and provides a better performance in case of the low signal-to-noise ratio when comparing with the existing matching pursuit (MP) based detection algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm.
文摘超宽带(Ultra-Wideband,UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival,UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技术和基于ESP32信号强度的权重自适应定位技术,大幅降低了对环境部署的依赖性,提高了定位的精度和稳定性。结合环境先验信息和目标高度的先验知识,构建了先验知识库,采用自适应定位技术,利用多个传感器的信息来调整对不同定位基站的置信度权重,进一步提高了定位精度和鲁棒性。实验结果表明,所提出的系统在视距(Line of Sight,LOS)和非视距(Non Line of Sight,NLOS)环境下都具有较高的定位精度和稳定性,并且仅需要不超过3个基站便可以满足室内环境定位的需求。
文摘对于高时间分辨率的超宽带(ultra wideband,UWB)信号来说,在测距应用中主要通过估计信号到达时间(time of arrival,TOA)来计算距离。文章提出了一种基于动态阈值检测的TOA估计算法以提高测距精度并降低算法复杂度。对接收方收到的匹配滤波输出脉冲进行峰值检测,确定直达单径(direct path,DP)的检测区间;设定一个能够反映出信号和信道特性的联合度量参数,根据该参数的不同设置相应的最佳阈值因子,在检测区间中通过阈值检测搜索DP精确位置对应的时刻,得到TOA的估计值。仿真采用IEEE802.15.4a标准信道,其结果表明所提算法适用于不同信噪比和延时特性的信道,并兼顾运算复杂度与算法精度。
文摘本文针对动态信噪比环境超宽带(UWB,Ultra WideBand)信号的非相干捕获,提出了一种基于遗传算法的信号捕获方案.以遗传算法结合在线估计接收信噪比,搜索积分窗口长度与定时位置的参数组合,实现系统要求的比特错误概率.该方法解决了传统捕获方案在未知信噪比条件下积分长度无法择优选取以及捕获门限难于设定的问题.仿真结果表明,基于遗传算法的二维参数捕获方法与传统Look and Jump by Ksteps算法相比有效的提高了未知信噪比条件下的系统捕获性能,拓展了UWB非相干系统的应用范围.