The bit error rate (BER) performance of multi-user direct spreading bi-phase shift keying (DSBPSK) direct impulse ultra wideband (UWB) systems is analyzed and simulated based on a statistical indoor multi-path f...The bit error rate (BER) performance of multi-user direct spreading bi-phase shift keying (DSBPSK) direct impulse ultra wideband (UWB) systems is analyzed and simulated based on a statistical indoor multi-path fading channel model. The BER of the system is theoretically derived and given in closed form, which is expressed in terms of channel parameters and system parameters such as pulse width parameter, pulse repeat period, user number and pulse waveform. With this BER expression, the effect of these parameters on the system performance can be evaluated in a uniform way. Simulation results well match the theory numerical results, and prove that the multi-access interference (MAI) of DS-BPSK UWB is a normal distribution.展开更多
The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) la...The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.展开更多
In this paper, the performance of UWB (ultrawide bandwidth) radio systems under impulsive noise environment (IN-E) is investigated. At first, the Middleton's class a model is used as a model of impulsive noise (IN...In this paper, the performance of UWB (ultrawide bandwidth) radio systems under impulsive noise environment (IN-E) is investigated. At first, the Middleton's class a model is used as a model of impulsive noise (IN), we investigate the statistical characteristics of in-phase and quadrature components of IN, and it is proved that unlike Gaussian noise (GN), they are dependent especially to IN with small impulsive indices, Then, making use of this dependence between in-phase and quadrature components, an ovel UWB radio receiver designed for IN is proposed. The exact expression for the average BER (bit error rate) of this receiver, which is a function of SNR (signal to noise power ratio) and threshold value, is derived. Thirdly, we'll discuss the optimum threshold value. We'll also estimate the performance of UWB radio systems with the proposed receiver designed for IN and with the conventional receiver designed for GN in INE. Numerical results show that the performance achieved by the proposed UWB radio receiver is much etter than that of the conventional UWB radio receiver. Meanwhile, it is shown that both impulsive index and threshold value have much effect on the performance of UWB radio systems under the condition of INE.展开更多
Based on the research on time domain and frequency domain transmitted reference Impulse Radio Ultra-WideBand (IR-UWB) system, this paper studies the optimization design for code domain transmitted reference IR-UWB sys...Based on the research on time domain and frequency domain transmitted reference Impulse Radio Ultra-WideBand (IR-UWB) system, this paper studies the optimization design for code domain transmitted reference IR-UWB system, and proposes a modified code domain transmitted reference IR-UWB system. The Bit Error Rate (BER) expressions for the modified system model in the condition of Additive White Gaussian Noise (AWGN) and multipath fading are deduced respectively. In addition, the performances of the modified system and the other three transmitted reference IR-UWB systems are simulated and compared. Theoretical analysis and simulation results show that the performance of the modified system is superior to the other three systems.展开更多
Ultra WideBand (UWB) radio is a new wireless technology that transmits extremely short duration radio impulses. In this paper, a new synchronization scheme is proposed in Direct Sequence (DS) UWB system using Perfect ...Ultra WideBand (UWB) radio is a new wireless technology that transmits extremely short duration radio impulses. In this paper, a new synchronization scheme is proposed in Direct Sequence (DS) UWB system using Perfect Punctured Binary Sequence Pairs (PPBSP) as the preamble. It can acquire both Pseudo-Noise (PN) sequence and frame synchronization at the same time. The properties and the combinatorial admis sibility conditions of PPBSP are presented. The simulation results show that PPBSP is good for synchronization by their good cross-correlation properties both under Additive White Gaussian Noise (AWGN) channel and modified Saleh-Valenzuela channel.展开更多
In this paper,the feasibility and performance of millimeter wave(mm Wave)60 GHz ultra-wide band(UWB)systems for gigabit machine-to-machine(M2M)communications are analyzed.Specifically,based on specifications,channel m...In this paper,the feasibility and performance of millimeter wave(mm Wave)60 GHz ultra-wide band(UWB)systems for gigabit machine-to-machine(M2M)communications are analyzed.Specifically,based on specifications,channel measurements and models for both line-of-sight(LOS)and non-LOS(NLOS)scenarios,60 GHz propagation mechanisms are summarized,and 60 GHz UWB link budget and performance are analyzed.Tests are performed for determining ranges and antenna configurations.Results show that gigabit capacity can be achieved with omni-directional antennas configuration at the transceiver,especially in LOS conditions.When the LOS path is blocked by a moving person or by radiowave propagation in the NLOS situation,omni-directional and directional antennas configuration at the transceiver is required,especially for a larger range between machines in office rooms.Therefore,it is essential to keep a clear LOS path in M2M applications like gigabit data transfer.The goal of this work is to provide useful information for standardizations and design of 60 GHz UWB systems.展开更多
In this paper, a novel adaptive transmit-receive scheme is presented for indoor Direct Se- quence Ultra-WideBand (DS-UWB) systems. In the proposed scheme, a simple switch module is in- troduced to improve the system t...In this paper, a novel adaptive transmit-receive scheme is presented for indoor Direct Se- quence Ultra-WideBand (DS-UWB) systems. In the proposed scheme, a simple switch module is in- troduced to improve the system throughput. Furthermore, adaptive detection is implemented via an improved Least Mean Squares (LMS) algorithm. The convergence behavior and the Bit Error Rate (BER) performance of the proposed scheme are examined under the realistic channel models. Simu- lation results show that, nearly without loss of the BER performance, the proposed scheme can obtain at least 2/3 improvement in training overhead compared with the conventional approach.展开更多
Using the hypothesis that data transmitted by different users are statistically independent of each other,this paper proposes a fixed-point blind adaptive multiuser detection algorithm for Time-Hopping (TH) Impulse Ra...Using the hypothesis that data transmitted by different users are statistically independent of each other,this paper proposes a fixed-point blind adaptive multiuser detection algorithm for Time-Hopping (TH) Impulse Radio (IR) Ultra Wide Band (UWB) systems in multipath channel,which is based on Independent Component Analysis (ICA) idea. The proposed algorithm employs maximizing negentropy criterion to separate the data packets of different users. Then the user characteristic se-quences are utilized to identify the data packet order of the desired user. This algorithm only needs the desired user’s characteristic sequence instead of channel information,power information and time-hoping code of any user. Due to using hypothesis of statistical independence among users,the proposed algorithm has the outstanding Bit Error Rate (BER) performance and the excellent ability of near-far resistance. Simulation results demonstrate that this algorithm has the performance close to that of Maximum-Likelihood (ML) algorithm and is a suboptimum blind adaptive multiuser detection algorithm of excellent near-far resistance and low complexity.展开更多
In this letter,P × N-pointIFFT is proposed to replace the N-point IFFT and analog fre-quency conversion in an Orthogonal Frequency Division Multiplexing (OFDM)-based Ultra-WideBand (UWB) system,and a new algorith...In this letter,P × N-pointIFFT is proposed to replace the N-point IFFT and analog fre-quency conversion in an Orthogonal Frequency Division Multiplexing (OFDM)-based Ultra-WideBand (UWB) system,and a new algorithm,named fast P × N-pointIFFT,is designed to reduce the com-plexity of the P × N-pointIFFT in the proposed scheme.展开更多
In this paper, we propose a new multi-user Rake receiver, based on the interference mutualization with a matrix representation for Multiple Input Single Output MISO channel. The proposed system used the Modified Gegen...In this paper, we propose a new multi-user Rake receiver, based on the interference mutualization with a matrix representation for Multiple Input Single Output MISO channel. The proposed system used the Modified Gegenbauer functions in order to generate the signal and to ensure the multi users transmission system. The new proposed receiver allows, using the temporal and special diversity, to avoid the interferences between symbols and to improve the system performances in terms of Bit Error Rate BER and interferences between users with a low algorithm complexity. The proposed solution is based on the classical Rake receiver associated with the equalizer receiver. In order to adapt the Rake approach, in single detection case and in multi users Ultra Wide Band environment, we propose a multi-user Rake receiver using the matrix form. Our proposed system is evaluated in terms of channel effects and multi users’ interferences.展开更多
基金The National High Technology Research and Deve-lopment Program of China (863Program) (Nos.2001AA123042,2003AA123330,2005AA123320).
文摘The bit error rate (BER) performance of multi-user direct spreading bi-phase shift keying (DSBPSK) direct impulse ultra wideband (UWB) systems is analyzed and simulated based on a statistical indoor multi-path fading channel model. The BER of the system is theoretically derived and given in closed form, which is expressed in terms of channel parameters and system parameters such as pulse width parameter, pulse repeat period, user number and pulse waveform. With this BER expression, the effect of these parameters on the system performance can be evaluated in a uniform way. Simulation results well match the theory numerical results, and prove that the multi-access interference (MAI) of DS-BPSK UWB is a normal distribution.
基金This work was partially supported by NSF under Grant 60496315 and national "863" projects under Grant2003AA12331005
文摘The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.
文摘In this paper, the performance of UWB (ultrawide bandwidth) radio systems under impulsive noise environment (IN-E) is investigated. At first, the Middleton's class a model is used as a model of impulsive noise (IN), we investigate the statistical characteristics of in-phase and quadrature components of IN, and it is proved that unlike Gaussian noise (GN), they are dependent especially to IN with small impulsive indices, Then, making use of this dependence between in-phase and quadrature components, an ovel UWB radio receiver designed for IN is proposed. The exact expression for the average BER (bit error rate) of this receiver, which is a function of SNR (signal to noise power ratio) and threshold value, is derived. Thirdly, we'll discuss the optimum threshold value. We'll also estimate the performance of UWB radio systems with the proposed receiver designed for IN and with the conventional receiver designed for GN in INE. Numerical results show that the performance achieved by the proposed UWB radio receiver is much etter than that of the conventional UWB radio receiver. Meanwhile, it is shown that both impulsive index and threshold value have much effect on the performance of UWB radio systems under the condition of INE.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2009AA011205)the Important National Science and Technology Specific Projects(No.2009ZX03006-008)
文摘Based on the research on time domain and frequency domain transmitted reference Impulse Radio Ultra-WideBand (IR-UWB) system, this paper studies the optimization design for code domain transmitted reference IR-UWB system, and proposes a modified code domain transmitted reference IR-UWB system. The Bit Error Rate (BER) expressions for the modified system model in the condition of Additive White Gaussian Noise (AWGN) and multipath fading are deduced respectively. In addition, the performances of the modified system and the other three transmitted reference IR-UWB systems are simulated and compared. Theoretical analysis and simulation results show that the performance of the modified system is superior to the other three systems.
基金Supported by the Key Project of Chinese Ministry of Education(No.03035)the National High Technology Research and Development Program of China (863 Program) (No.2003AA 123240)the National Natural Science Foundation of China(No.60372097).
文摘Ultra WideBand (UWB) radio is a new wireless technology that transmits extremely short duration radio impulses. In this paper, a new synchronization scheme is proposed in Direct Sequence (DS) UWB system using Perfect Punctured Binary Sequence Pairs (PPBSP) as the preamble. It can acquire both Pseudo-Noise (PN) sequence and frame synchronization at the same time. The properties and the combinatorial admis sibility conditions of PPBSP are presented. The simulation results show that PPBSP is good for synchronization by their good cross-correlation properties both under Additive White Gaussian Noise (AWGN) channel and modified Saleh-Valenzuela channel.
基金supported by the State Key Laboratory of Millimeter Waves,Southeast University,China under grant No.K201517supported by the Fundamental Research Funds for the Central Universities under Grant No.2015 XS19.
文摘In this paper,the feasibility and performance of millimeter wave(mm Wave)60 GHz ultra-wide band(UWB)systems for gigabit machine-to-machine(M2M)communications are analyzed.Specifically,based on specifications,channel measurements and models for both line-of-sight(LOS)and non-LOS(NLOS)scenarios,60 GHz propagation mechanisms are summarized,and 60 GHz UWB link budget and performance are analyzed.Tests are performed for determining ranges and antenna configurations.Results show that gigabit capacity can be achieved with omni-directional antennas configuration at the transceiver,especially in LOS conditions.When the LOS path is blocked by a moving person or by radiowave propagation in the NLOS situation,omni-directional and directional antennas configuration at the transceiver is required,especially for a larger range between machines in office rooms.Therefore,it is essential to keep a clear LOS path in M2M applications like gigabit data transfer.The goal of this work is to provide useful information for standardizations and design of 60 GHz UWB systems.
基金Supported by the National Natural Science Foundation of China (No.60372055)the National Doctoral Foun-dation of China (No.20030698027).
文摘In this paper, a novel adaptive transmit-receive scheme is presented for indoor Direct Se- quence Ultra-WideBand (DS-UWB) systems. In the proposed scheme, a simple switch module is in- troduced to improve the system throughput. Furthermore, adaptive detection is implemented via an improved Least Mean Squares (LMS) algorithm. The convergence behavior and the Bit Error Rate (BER) performance of the proposed scheme are examined under the realistic channel models. Simu- lation results show that, nearly without loss of the BER performance, the proposed scheme can obtain at least 2/3 improvement in training overhead compared with the conventional approach.
文摘Using the hypothesis that data transmitted by different users are statistically independent of each other,this paper proposes a fixed-point blind adaptive multiuser detection algorithm for Time-Hopping (TH) Impulse Radio (IR) Ultra Wide Band (UWB) systems in multipath channel,which is based on Independent Component Analysis (ICA) idea. The proposed algorithm employs maximizing negentropy criterion to separate the data packets of different users. Then the user characteristic se-quences are utilized to identify the data packet order of the desired user. This algorithm only needs the desired user’s characteristic sequence instead of channel information,power information and time-hoping code of any user. Due to using hypothesis of statistical independence among users,the proposed algorithm has the outstanding Bit Error Rate (BER) performance and the excellent ability of near-far resistance. Simulation results demonstrate that this algorithm has the performance close to that of Maximum-Likelihood (ML) algorithm and is a suboptimum blind adaptive multiuser detection algorithm of excellent near-far resistance and low complexity.
基金Supported by the Natural Science Foundation of Jiangsu Province (No.BK2005409)the National 863 Program (No.2005AA123320).
文摘In this letter,P × N-pointIFFT is proposed to replace the N-point IFFT and analog fre-quency conversion in an Orthogonal Frequency Division Multiplexing (OFDM)-based Ultra-WideBand (UWB) system,and a new algorithm,named fast P × N-pointIFFT,is designed to reduce the com-plexity of the P × N-pointIFFT in the proposed scheme.
文摘In this paper, we propose a new multi-user Rake receiver, based on the interference mutualization with a matrix representation for Multiple Input Single Output MISO channel. The proposed system used the Modified Gegenbauer functions in order to generate the signal and to ensure the multi users transmission system. The new proposed receiver allows, using the temporal and special diversity, to avoid the interferences between symbols and to improve the system performances in terms of Bit Error Rate BER and interferences between users with a low algorithm complexity. The proposed solution is based on the classical Rake receiver associated with the equalizer receiver. In order to adapt the Rake approach, in single detection case and in multi users Ultra Wide Band environment, we propose a multi-user Rake receiver using the matrix form. Our proposed system is evaluated in terms of channel effects and multi users’ interferences.