Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of...Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be theα,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity throughα,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.展开更多
A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death ...A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death distinguished by imbalance in iron and thiol metabolism, leading to lethal lipid peroxidation. However, the molecular mechanisms of ferroptosis in the context of PNI and nerve regeneration remain unclear. Ferroportin (Fpn), the only known mammalian nonheme iron export protein, plays a pivotal part in inhibiting ferroptosis by maintaining intracellular iron homeostasis. Here, we explored in vitro and in vivo the involvement of Fpn in neuronal ferroptosis. We first delineated that reactive oxygen species at the injury site induces neuronal ferroptosis by increasing intracellular iron via accelerated UBA52-driven ubiquitination and degradation of Fpn, and stimulation of lipid peroxidation. Early administration of the potent arterial vasodilator, hydralazine (HYD), decreases the ubiquitination of Fpn after PNI by binding to UBA52, leading to suppression of neuronal cell death and significant acceleration of axon regeneration and motor function recovery. HYD targeting of ferroptosis is a promising strategy for clinical management of PNI.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a deadly malignancy with limited treatment options.Deubiquitinases(DUBs)have been confirmed to play a crucial role in the development of malignant tumors.JOSD2 is ...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a deadly malignancy with limited treatment options.Deubiquitinases(DUBs)have been confirmed to play a crucial role in the development of malignant tumors.JOSD2 is a DUB involved in con-trolling protein deubiquitination and influencing critical cellular processes in cancer.AIM To investigate the impact of JOSD2 on the progression of ESCC.METHODS Bioinformatic analyses were employed to explore the expression,prognosis,and enriched pathways associated with JOSD2 in ESCC.Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines(KYSE30 and RESULTS )Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues,which was associated with poor prognosis.Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells.JOSD2 knockdown inhibited ESCC cell activity,including proliferation and colony-forming ability.Moreover,JOSD2 knockdown decreased the drug resistance and migration of ESCC cells,while JOSD2 overexpression enhanced these phenotypes.In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC.Mechanistically,JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways.Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2,which identified the four primary proteins that bind to JOSD2,namely USP47,IGKV2D-29,HSP90AB1,and PRMT5.CONCLUSION JOSD2 plays a crucial role in enhancing the proliferation,migration,and drug resistance of ESCC,suggesting that JOSD2 is a potential therapeutic target in ESCC.展开更多
Smad ubiquitylation regulatory factor 1(Smurf1)is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase.Initially,Smurf1 was reportedly involved in the negative regulation of the bone morphogenes...Smad ubiquitylation regulatory factor 1(Smurf1)is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase.Initially,Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein(BMP)pathway.After further research,several studies have confirmed that Smurf1 is widely involved in various biological processes,such as bone homeostasis regulation,cell migration,apoptosis,and planar cell polarity.At the same time,recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1’s expression,activity,and substrate selectivity.In our review,a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.展开更多
DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
Objective Ubiquitin conjugate enzyme E2O(UBE2O)is a ubiquitin-conjugating enzyme that has been reported to be involved in tumorigenesis.This study investigated the role of UBE2O in hepatocellular carcinoma(HCC).Method...Objective Ubiquitin conjugate enzyme E2O(UBE2O)is a ubiquitin-conjugating enzyme that has been reported to be involved in tumorigenesis.This study investigated the role of UBE2O in hepatocellular carcinoma(HCC).Methods The expression of UBE2O was detected using qRT-PCR,Western blotting,and immunohistochemical staining.Cell proliferation and Transwell assays were used to detect proliferation,migration,and invasion of HCC cells,respectively.Bioinformatic analysis was performed to analyze the relationship between UBE2O and the clinical features,prognosis,and immune cell infiltration of HCC.Results UBE2O was significantly over-expressed in HCC tissues.High expression of UBE2O was associated with poor tumor grade and poor prognosis.Functional experiments showed that down-regulation of UBE2O inhibited HCC cell proliferation,migration,and invasion.Co-expression gene analysis and gene set enrichment analysis showed that UBE2O was associated with protein hydrolysis,cell cycle,and cancer-related pathways in HCC.The results of immune analysis revealed that the expression of UBE2O was positively correlated with the immune infiltration and expression of immune-related chemokines of HCC.Conclusions UBE2O is significantly correlated with the prognosis of HCC and may be a valuable prognostic biomarker for HCC.展开更多
Background:Cholangiocarcinoma(CCA)represents the epithelial cell cancer with high aggressiveness whose five-year survival rate is poor with standard treatment.Calcyclin-binding protein(CACYBP)shows aberrant expression...Background:Cholangiocarcinoma(CCA)represents the epithelial cell cancer with high aggressiveness whose five-year survival rate is poor with standard treatment.Calcyclin-binding protein(CACYBP)shows aberrant expression within several malignant tumors,but the role of CACYBP in CCA remains unknown.Methods:Immunohistochemical(IHC)analysis was used to identify CACYBP overexpression in clinical samples of CCA patients.Moreover,its correlation with clinical outcome was revealed.Furthermore,CACYBP’s effect on CCA cell growth and invasion was investigated in vitro and in vivo using loss-of-function experiments.Results:CACYBP showed up-regulation in CCA,which predicts the dismal prognostic outcome.CACYBP had an important effect on in-vitro and in-vivo cancer cell proliferation and migration.Additionally,knockdown of CACYBP weakened protein stability by promoting ubiquitination of MCM2.Accordingly,MCM2 up-regulation partly reversed CACYBP deficiency’s inhibition against cancer cell viability and invasion.Thus,MCM2 might drive CCA development by Wnt/β-catenin pathway.Conclusions:CACYBP exerted a tumor-promoting role in CCA by suppressing ubiquitination of MCM2 and activating Wnt/β-catenin pathway,hence revealing that it may be the possible therapeutic target for CCA treatment.展开更多
Glioma is the most common primary brain tumor.Exploration of new tumorigenesis mechanism of glioma is critical to determine more effective treatment targets as well as to develop effective prognosis methods that can e...Glioma is the most common primary brain tumor.Exploration of new tumorigenesis mechanism of glioma is critical to determine more effective treatment targets as well as to develop effective prognosis methods that can enhance the treatment efficacy.We previously demonstrated that the deubiquitinase biquitin carboxyl-terminal hydrolase L5(UCHL5)was downregulated in human glioma.However,the effect and mechanism of UCHL5 on the proliferation of glioma cells remains unknown.Methods:Transfection of siRNA was used to knockdown the expression of UCHL5 in U251 cells.The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT)assay,Edu assay,and colony formation assay were employed to identify the effect of UCHL5 on the proliferation of U251 glioma cells.Western blotting and quantitative real-time PCR were carried out to detect the interaction of UCHL5 and PTEN.The effect of UCHL5 on the growth of glioma in vivo was evaluated in nude mice.Then Immunohistochemistry(IHC)were performed to analysis the expression of UCHL5 and PTEN in human glioma tissues.Results:Here,we have reported that silencing of UCHL5 could promote the proliferation of U251 glioma cells through MTT assay,Edu assay,and colony formation assay.Mechanically,we revealed that UCHL5 stabilizes the phosphatase and tensin homolog(PTEN)expression by deubiquitination,thereby inhibiting cell proliferation in U251 cells.Tumor xenograft experiments further demonstrated that silencing the UCHL5 expression could accelerate U251 cell growth in vivo.Finally,in human glioma tissue microarray,the positive correlation between UCHL5 and PTEN expression was confirmed through IHC assay.Conclusion:UCHL5 restrains the proliferation of U251 glioma cells by stabilizing and deubiquitinating PTEN.Our findings provide ideas for developing enhanced targeted PTEN therapy for patients with glioma.展开更多
BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates.Early prediction of prognosis using specific indicators is of great significance.AIM To assess changes in ubiquitin carboxy-termin...BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates.Early prediction of prognosis using specific indicators is of great significance.AIM To assess changes in ubiquitin carboxy-terminal hydrolase L1(UCH-L1)and glial fibrillary acidic protein(GFAP)levels in patients with glioma pre-and postoperatively.METHODS Between June 2018 and June 2021,91 patients with gliomas who underwent surgery at our hospital were enrolled in the glioma group.Sixty healthy volunteers were included in the control group.Serum UCH-L1 and GFAP levels were measured in peripheral blood collected from patients with glioma before and 3 d after surgery.UCH-L1 and GFAP levels in patients with glioma with different clinicopathological characteristics were compared before and after surgery.The patients were followed-up until February 2022.Postoperative glioma recurrence was recorded to determine the serum UCH-L1 and GFAP levels,which could assist in predicting postoperative glioma recurrence.RESULTS UCH-L1 and GFAP levels in patients with glioma decreased significantly 3 d after surgery compared to those before therapy(P<0.05).However,UCH-L1 and GFAP levels in the glioma group were significantly higher than those in the control group before and after surgery(P<0.05).There were no statistically significant differences in preoperative serum UCH-L1 and GFAP levels among patients with glioma according to sex,age,pathological type,tumor location,or number of lesions(P>0.05).Serum UCH-L1 and GFAP levels were significantly lower in the patients with WHO grade I-II tumors than in those with gradeⅢ-IV tumors(P<0.05).Serum UCH-L1 and GFAP levels were lower in the patients with tumor diameter≤5 cm than in those with diameter>5 cm,in which the differences were statistically significant(P<0.05).Glioma recurred in 22 patients.The preoperative and 3-d postoperative serum UCH-L1 and GFAP levels were significantly higher in the recurrence group than these in the non-recurrence group(P<0.05).Receiver operating characteristic curves were plotted.The areas under the curves of preoperative serum UCH-L1 and GFAP levels for predicting postoperative glioma recurrence were 0.785 and 0.775,respectively.However,the efficacy of serum UCH-L1 and GFAP levels 3 d after surgery in predicting postoperative glioma recurrence was slightly lower compared with their preoperative levels.CONCLUSION UCH-L1 and GFAP efficiently reflected the development and recurrence of gliomas and could be used as potential indicators for the recurrence and prognosis of glioma.展开更多
Objective:Using data mining tools,study the potential pathways of estrogen’s cardiovascular effects.Methods:The GeneExpression Omnibus database was used to download the relevant high-throughput microarray dataset GSE...Objective:Using data mining tools,study the potential pathways of estrogen’s cardiovascular effects.Methods:The GeneExpression Omnibus database was used to download the relevant high-throughput microarray dataset GSE72180,which was then analyzed for differential genes using the GEO2R online analysis tool,gene function and pathway enrichment analysis using DAVID 6.8,protein interaction network analysis using the STRING database,and core network extraction using the MCODE algorithm.Results:A total of 131 differential genes were identified and enriched for gene function and signaling pathway analysis,which indicated that these genes were related with focal adhesion and the HIF-1 signaling pathway.MCODE algorithm analysis extracted 1 core sub-network of these genes to be related to ubiquitin protein transferase activity,protein polyubiquitination,protein ubiquitination involved in ubiquitin-dependent proteolytic metabolic processes,ligase activity,and clustering on ubiquitin-mediated protein hydrolysis signaling pathway.Conclusion:By using data mining tools,it is possible to identify how estrogen may influence the cardiovascular system by controlling the ubiquitination process.This information may be used as a reference for etiology and preventive studies of cardiovascular illnesses.展开更多
Fanconi anemia (FA) is a rare recessive hereditary disease characterized clinically by congenital defects, progressive bone-marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity ...Fanconi anemia (FA) is a rare recessive hereditary disease characterized clinically by congenital defects, progressive bone-marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). To date, at least 12 FA genes have been found deleted or mutated in FA cells, and 10 FA gene products form a core complex involved in FA/BRCA2 DNA repair pathway-FA pathway. The ubiquitin E3 ligase FANCL, an important factor of FA core complex, co-functions with a new ubiquitin conjugating enzyme UBE2T to catalyze the monoubiquitination of FANCD2. FANCD2-Ub binds BRCA2 to form a new complex located in chromatin foci and then take part in DNA repair process. The deubiquitylating enzyme USP1 removes the mono-ubiquitin from FANCD2-Ub following completion of the repair process, then restores the blocked cell cycle to normal order by shutting off the FA pathway. In a word, the FANCD2 activity adjusted exquisitely by ubiquitination and/or deubiquitination in vivo may co-regulate the FA pathway involving in variant DNA repair pathway.展开更多
Transcription factor Oct4 plays critical roles in maintaining pluripotency and controlling lineage commitment of embryonic stem cells (ESCs). Our previous study indicates that Wwp2, a mouse HECT-type E3 ubiquitin li...Transcription factor Oct4 plays critical roles in maintaining pluripotency and controlling lineage commitment of embryonic stem cells (ESCs). Our previous study indicates that Wwp2, a mouse HECT-type E3 ubiquitin ligase, ubiquitinates Oct4 and promotes its degradation in a heterologous system. However, roles of Wwp2 in regulating en- dogenous Oct4 protein levels as well as molecular characteristics of the function of Wwp2 have not been determined. Here, we report that Wwp2 plays an important role in Oct4 ubiquitination and degradation during differentiation of embryonal carcinoma cells (ECCs), although it does not appear to affect Oct4 protein levels in the undifferentiated ECCs and ESCs. Importantly, inhibition of Wwp2 expression by specific RNA interference elevates the Oct4 protein level, leading to attenuation in retinoid acid-induced activation of differentiation-related marker genes. Mechanisti- cally, Wwp2 catalyzes Oct4 poly-ubiquitination via the lysine 63 linkage in a dosage-dependent manner. Interest- ingly, Wwp2 also regulates its own ligase activity in a similar manner. Moreover, auto-ubiquitination of Wwp2 occurs through an intra-molecular mechanism. Taken together, these results demonstrate a crucial role of Wwp2 in con- trolling endogenous Oct4 protein levels during differentiation processes of ECCs and suggest an interesting dosage- dependent mechanism for regulating the catalytic activity of the E3 ubiquitin ligase, Wwp2.展开更多
Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes(DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. ...Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes(DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. We recently reported that Otub1, a DUB from the OTU-domain containing protease family, is a novel p53 regulator. Interestingly, Otub1 abrogates p53 ubiquitination and stabilizes and activates p53 in cells independently of its deubiquitinating enzyme activity. Instead, it does so by inhibiting the MDM2 cognate ubiquitin-conjugating enzyme(E2) UbcH5. Otub1 also regulates other biological signaling through this non-canonical mechanism, suppression of E2, including the inhibition of DNA-damage-induced chromatin ubiquitination. Thus, Otub1 evolves as a unique DUB that mainly suppresses E2 to regulate substrates. Here we review the current progress made towards the understanding of the complex regulation of the p53 tumor suppressor pathway by DUBs, the biological function of Otub1 including its positive regulation of p53, and the mechanistic insights into how Otub1 suppresses E2.展开更多
E3 ubiquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome.Therefore,E3 ubiquitin ligases play an essential role in a...E3 ubiquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome.Therefore,E3 ubiquitin ligases play an essential role in a variety of biological processes including cell cycle regulation,proliferation and apoptosis.E3 ubiquitin ligases are often found overexpressed in human cancers,including lung cancer,and their deregulation has been shown to contribute to cancer development.However,the lack of specific inhibitors in clinical trials is a major issue in targeting E3 ubiquitin ligases with currently only one E3 ubiquitin ligase inhibitor being tested in the clinical setting.In this review,we focus on E3 ubiquitin ligases that have been found deregulated in lung cancer.Furthermore,we discuss the processes in which they are involved and evaluate them as potential anti-cancer targets.By better understanding the mechanisms by which E3 ubiquitin ligases regulate biological processes and their exact role in carcinogenesis,we can improve the development of specific E3 ubiquitin ligase inhibitors and pave the way for novel treatment strategies for cancer patients.展开更多
Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was perfor...Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was performed. Infertility factors such as immunological, infectious and biochemical disorders were examined to select patients with idiopathic infertility. DNA was isolated from peripheral blood of the selected patients and control population, which were examined for mutations using polymerase chain reaction-single strand conformation polymorphism analysis. Furthermore, nucleotide sequences were sequenced in some patients and controls. Results: Of 41 infertile men, 9 (22.0%, P = 0.01) had changes in USP26 gene on the X chromosome. A compound mutation (364insACA; 460G→A) was detected in 8 patients (19.5%, P = 0.01) and a 1044T→A substitution was found in 1 patient (2.4%, P 〉 0.05). All three variations led to changes in the coding amino acids. Two substitutions predict some changes: 460G→ A changes a valine into an isoleucine, and 1044T → A substitutes a leucine for a phenylalanine. Another insertion of three nucleotides ACA causes an insertion of threonine. No other changes were found in the remaining patients and fertile controls. Conclusion: The USP26 gene might be of importance in male reproduction. Mutations in this gene might be associated with male infertility, and might negatively affect testicular function. Further research on this issue is in progress.展开更多
Objective To identify ubiquitinated proteins from complex human multiple myeloma (MM) U266 cells,a malignant disorder of differentiated human B cells.Methods Employing a globally proteomic strategy combining of immu...Objective To identify ubiquitinated proteins from complex human multiple myeloma (MM) U266 cells,a malignant disorder of differentiated human B cells.Methods Employing a globally proteomic strategy combining of immunoprecipitation,LC-MS/MS and SCX-LC-MS analysis to identified ubiquitination sites,which were identified by detecting signature peptides containing a GG-tag (114.1 Da) and an LRGG-tag (383.2 Da).Results In total,52 ubiquitinated proteins containing 73 ubiquitination sites of which 14 and 59 sites contained LRGG-tag and GG-tag were identified,respectively.Conclusion Classification analysis by of the proteins identified in the study based on the PANTHER showed that they were associated with multiple functional groups.This suggested the involvement of many endogenous proteins in the ubiquitination in MM.展开更多
基金the Science and Technology Development Fund,Macao SAR(Grant Nos.:No.0159/2020/A3,No.0058/2020/AMJ,No.0096/2019/A2 and SKL-QRCM(UM)-2023-2025)the Research Committee of the University of Macao(Grant No.:MYRG2022-00189-ICMS)+2 种基金the Guangdong Provincial Special Fund for Marine Economic Development Project(Project No.:GDNRC[2021]48)National Natural Science Foundation of China(Grant No.:82260801)K.C.Wong Education Foundation(Grant No.:GJTD-2020-12).
文摘Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be theα,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity throughα,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.:82122043,81972052,81902213,82201537,and 81730065)the China Postdoctoral Science Foundation(Grant Nos.:2021M693946 and 2019M653967).
文摘A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death distinguished by imbalance in iron and thiol metabolism, leading to lethal lipid peroxidation. However, the molecular mechanisms of ferroptosis in the context of PNI and nerve regeneration remain unclear. Ferroportin (Fpn), the only known mammalian nonheme iron export protein, plays a pivotal part in inhibiting ferroptosis by maintaining intracellular iron homeostasis. Here, we explored in vitro and in vivo the involvement of Fpn in neuronal ferroptosis. We first delineated that reactive oxygen species at the injury site induces neuronal ferroptosis by increasing intracellular iron via accelerated UBA52-driven ubiquitination and degradation of Fpn, and stimulation of lipid peroxidation. Early administration of the potent arterial vasodilator, hydralazine (HYD), decreases the ubiquitination of Fpn after PNI by binding to UBA52, leading to suppression of neuronal cell death and significant acceleration of axon regeneration and motor function recovery. HYD targeting of ferroptosis is a promising strategy for clinical management of PNI.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-009ATianjin Medical University Cancer Hospital National Natural Science Foundation Cultivation Program,No.220108+3 种基金National Natural Science Foundation of China,No.82373134Science and Technology Development Fund of Tianjin Education Commission for Higher Education,No.2022KJ228Chinese Anti-Cancer Association-Heng Rui Anti-angiogenesis Targeted Tumor Research Fund,No.2021001045and Scientific Research Translational Foundation of Wenzhou Safety(Emergency)Institute of Tianjin University,No.TJUWYY2022025.
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a deadly malignancy with limited treatment options.Deubiquitinases(DUBs)have been confirmed to play a crucial role in the development of malignant tumors.JOSD2 is a DUB involved in con-trolling protein deubiquitination and influencing critical cellular processes in cancer.AIM To investigate the impact of JOSD2 on the progression of ESCC.METHODS Bioinformatic analyses were employed to explore the expression,prognosis,and enriched pathways associated with JOSD2 in ESCC.Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines(KYSE30 and RESULTS )Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues,which was associated with poor prognosis.Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells.JOSD2 knockdown inhibited ESCC cell activity,including proliferation and colony-forming ability.Moreover,JOSD2 knockdown decreased the drug resistance and migration of ESCC cells,while JOSD2 overexpression enhanced these phenotypes.In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC.Mechanistically,JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways.Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2,which identified the four primary proteins that bind to JOSD2,namely USP47,IGKV2D-29,HSP90AB1,and PRMT5.CONCLUSION JOSD2 plays a crucial role in enhancing the proliferation,migration,and drug resistance of ESCC,suggesting that JOSD2 is a potential therapeutic target in ESCC.
基金supported by the Natural Science Foundation of Hubei Province(No.2021CFB155)China Postdoctoral Science Foundation(No.2021M701338)Part of the work was supported by Postdoctoral Creative Research Positions of Hubei Province of China(No.2021).
文摘Smad ubiquitylation regulatory factor 1(Smurf1)is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase.Initially,Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein(BMP)pathway.After further research,several studies have confirmed that Smurf1 is widely involved in various biological processes,such as bone homeostasis regulation,cell migration,apoptosis,and planar cell polarity.At the same time,recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1’s expression,activity,and substrate selectivity.In our review,a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
基金supported by grants from the National Natural Science Foundation of China(No.81670554 and No.8217113366)the Science and Technology Plan of Wuhan City(No.2020020601012208)+2 种基金the Natural Science Fund for Distinguished Young Scholars of Hubei Province(No.2017CFA068)the National Key R&D Program of China(No.2019YFC0121505)the Science and Technology Innovation Cultivation Fund of Zhongnan Hospital of Wuhan University(No.CXPY2020042).
文摘Objective Ubiquitin conjugate enzyme E2O(UBE2O)is a ubiquitin-conjugating enzyme that has been reported to be involved in tumorigenesis.This study investigated the role of UBE2O in hepatocellular carcinoma(HCC).Methods The expression of UBE2O was detected using qRT-PCR,Western blotting,and immunohistochemical staining.Cell proliferation and Transwell assays were used to detect proliferation,migration,and invasion of HCC cells,respectively.Bioinformatic analysis was performed to analyze the relationship between UBE2O and the clinical features,prognosis,and immune cell infiltration of HCC.Results UBE2O was significantly over-expressed in HCC tissues.High expression of UBE2O was associated with poor tumor grade and poor prognosis.Functional experiments showed that down-regulation of UBE2O inhibited HCC cell proliferation,migration,and invasion.Co-expression gene analysis and gene set enrichment analysis showed that UBE2O was associated with protein hydrolysis,cell cycle,and cancer-related pathways in HCC.The results of immune analysis revealed that the expression of UBE2O was positively correlated with the immune infiltration and expression of immune-related chemokines of HCC.Conclusions UBE2O is significantly correlated with the prognosis of HCC and may be a valuable prognostic biomarker for HCC.
基金funded by Shenzhen Key Medical Discipline Construction Fund(No.SZXK015)Guangdong Provincial Key Clinical Specialty Construction Project,National Key Clinical Specialty Construction Project and Guangdong Medical Science and Technology Research Fund(No.A2021230).
文摘Background:Cholangiocarcinoma(CCA)represents the epithelial cell cancer with high aggressiveness whose five-year survival rate is poor with standard treatment.Calcyclin-binding protein(CACYBP)shows aberrant expression within several malignant tumors,but the role of CACYBP in CCA remains unknown.Methods:Immunohistochemical(IHC)analysis was used to identify CACYBP overexpression in clinical samples of CCA patients.Moreover,its correlation with clinical outcome was revealed.Furthermore,CACYBP’s effect on CCA cell growth and invasion was investigated in vitro and in vivo using loss-of-function experiments.Results:CACYBP showed up-regulation in CCA,which predicts the dismal prognostic outcome.CACYBP had an important effect on in-vitro and in-vivo cancer cell proliferation and migration.Additionally,knockdown of CACYBP weakened protein stability by promoting ubiquitination of MCM2.Accordingly,MCM2 up-regulation partly reversed CACYBP deficiency’s inhibition against cancer cell viability and invasion.Thus,MCM2 might drive CCA development by Wnt/β-catenin pathway.Conclusions:CACYBP exerted a tumor-promoting role in CCA by suppressing ubiquitination of MCM2 and activating Wnt/β-catenin pathway,hence revealing that it may be the possible therapeutic target for CCA treatment.
基金supported by grants from the Shenzhen Science and Technology Innovation Commission Grant(Nos.JCYJ20180507182253653 and JCYJ20190808172201639)Guangdong Province Basic and Applied Basic Research Fund(No.2022A1515111143).
文摘Glioma is the most common primary brain tumor.Exploration of new tumorigenesis mechanism of glioma is critical to determine more effective treatment targets as well as to develop effective prognosis methods that can enhance the treatment efficacy.We previously demonstrated that the deubiquitinase biquitin carboxyl-terminal hydrolase L5(UCHL5)was downregulated in human glioma.However,the effect and mechanism of UCHL5 on the proliferation of glioma cells remains unknown.Methods:Transfection of siRNA was used to knockdown the expression of UCHL5 in U251 cells.The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT)assay,Edu assay,and colony formation assay were employed to identify the effect of UCHL5 on the proliferation of U251 glioma cells.Western blotting and quantitative real-time PCR were carried out to detect the interaction of UCHL5 and PTEN.The effect of UCHL5 on the growth of glioma in vivo was evaluated in nude mice.Then Immunohistochemistry(IHC)were performed to analysis the expression of UCHL5 and PTEN in human glioma tissues.Results:Here,we have reported that silencing of UCHL5 could promote the proliferation of U251 glioma cells through MTT assay,Edu assay,and colony formation assay.Mechanically,we revealed that UCHL5 stabilizes the phosphatase and tensin homolog(PTEN)expression by deubiquitination,thereby inhibiting cell proliferation in U251 cells.Tumor xenograft experiments further demonstrated that silencing the UCHL5 expression could accelerate U251 cell growth in vivo.Finally,in human glioma tissue microarray,the positive correlation between UCHL5 and PTEN expression was confirmed through IHC assay.Conclusion:UCHL5 restrains the proliferation of U251 glioma cells by stabilizing and deubiquitinating PTEN.Our findings provide ideas for developing enhanced targeted PTEN therapy for patients with glioma.
基金Supported by Hebei Medical Science Research Project,No.20220648。
文摘BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates.Early prediction of prognosis using specific indicators is of great significance.AIM To assess changes in ubiquitin carboxy-terminal hydrolase L1(UCH-L1)and glial fibrillary acidic protein(GFAP)levels in patients with glioma pre-and postoperatively.METHODS Between June 2018 and June 2021,91 patients with gliomas who underwent surgery at our hospital were enrolled in the glioma group.Sixty healthy volunteers were included in the control group.Serum UCH-L1 and GFAP levels were measured in peripheral blood collected from patients with glioma before and 3 d after surgery.UCH-L1 and GFAP levels in patients with glioma with different clinicopathological characteristics were compared before and after surgery.The patients were followed-up until February 2022.Postoperative glioma recurrence was recorded to determine the serum UCH-L1 and GFAP levels,which could assist in predicting postoperative glioma recurrence.RESULTS UCH-L1 and GFAP levels in patients with glioma decreased significantly 3 d after surgery compared to those before therapy(P<0.05).However,UCH-L1 and GFAP levels in the glioma group were significantly higher than those in the control group before and after surgery(P<0.05).There were no statistically significant differences in preoperative serum UCH-L1 and GFAP levels among patients with glioma according to sex,age,pathological type,tumor location,or number of lesions(P>0.05).Serum UCH-L1 and GFAP levels were significantly lower in the patients with WHO grade I-II tumors than in those with gradeⅢ-IV tumors(P<0.05).Serum UCH-L1 and GFAP levels were lower in the patients with tumor diameter≤5 cm than in those with diameter>5 cm,in which the differences were statistically significant(P<0.05).Glioma recurred in 22 patients.The preoperative and 3-d postoperative serum UCH-L1 and GFAP levels were significantly higher in the recurrence group than these in the non-recurrence group(P<0.05).Receiver operating characteristic curves were plotted.The areas under the curves of preoperative serum UCH-L1 and GFAP levels for predicting postoperative glioma recurrence were 0.785 and 0.775,respectively.However,the efficacy of serum UCH-L1 and GFAP levels 3 d after surgery in predicting postoperative glioma recurrence was slightly lower compared with their preoperative levels.CONCLUSION UCH-L1 and GFAP efficiently reflected the development and recurrence of gliomas and could be used as potential indicators for the recurrence and prognosis of glioma.
基金supported by Jilin Provincial Department of Education Project(20200201515 JC).
文摘Objective:Using data mining tools,study the potential pathways of estrogen’s cardiovascular effects.Methods:The GeneExpression Omnibus database was used to download the relevant high-throughput microarray dataset GSE72180,which was then analyzed for differential genes using the GEO2R online analysis tool,gene function and pathway enrichment analysis using DAVID 6.8,protein interaction network analysis using the STRING database,and core network extraction using the MCODE algorithm.Results:A total of 131 differential genes were identified and enriched for gene function and signaling pathway analysis,which indicated that these genes were related with focal adhesion and the HIF-1 signaling pathway.MCODE algorithm analysis extracted 1 core sub-network of these genes to be related to ubiquitin protein transferase activity,protein polyubiquitination,protein ubiquitination involved in ubiquitin-dependent proteolytic metabolic processes,ligase activity,and clustering on ubiquitin-mediated protein hydrolysis signaling pathway.Conclusion:By using data mining tools,it is possible to identify how estrogen may influence the cardiovascular system by controlling the ubiquitination process.This information may be used as a reference for etiology and preventive studies of cardiovascular illnesses.
基金This work was supported by the National Natural Sciences Foundation of China (No. 30470379).
文摘Fanconi anemia (FA) is a rare recessive hereditary disease characterized clinically by congenital defects, progressive bone-marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). To date, at least 12 FA genes have been found deleted or mutated in FA cells, and 10 FA gene products form a core complex involved in FA/BRCA2 DNA repair pathway-FA pathway. The ubiquitin E3 ligase FANCL, an important factor of FA core complex, co-functions with a new ubiquitin conjugating enzyme UBE2T to catalyze the monoubiquitination of FANCD2. FANCD2-Ub binds BRCA2 to form a new complex located in chromatin foci and then take part in DNA repair process. The deubiquitylating enzyme USP1 removes the mono-ubiquitin from FANCD2-Ub following completion of the repair process, then restores the blocked cell cycle to normal order by shutting off the FA pathway. In a word, the FANCD2 activity adjusted exquisitely by ubiquitination and/or deubiquitination in vivo may co-regulate the FA pathway involving in variant DNA repair pathway.
基金We thank Dr Richard Baer (Pathology, Columbia University, New York, USA) for generously providing various Ub mutant plasmids. This study was supported by Grants from the National Natural Science Foundation of China (30871257, 30730051) and the National High Technology Research, Development Program of China (2006CB943901 and 2007CB947904), the Shanghai Sci- ence and Technology Developmental Foundation (08JC1413100) and the Shanghai Leading Academic Discipline Project ($30201).
文摘Transcription factor Oct4 plays critical roles in maintaining pluripotency and controlling lineage commitment of embryonic stem cells (ESCs). Our previous study indicates that Wwp2, a mouse HECT-type E3 ubiquitin ligase, ubiquitinates Oct4 and promotes its degradation in a heterologous system. However, roles of Wwp2 in regulating en- dogenous Oct4 protein levels as well as molecular characteristics of the function of Wwp2 have not been determined. Here, we report that Wwp2 plays an important role in Oct4 ubiquitination and degradation during differentiation of embryonal carcinoma cells (ECCs), although it does not appear to affect Oct4 protein levels in the undifferentiated ECCs and ESCs. Importantly, inhibition of Wwp2 expression by specific RNA interference elevates the Oct4 protein level, leading to attenuation in retinoid acid-induced activation of differentiation-related marker genes. Mechanisti- cally, Wwp2 catalyzes Oct4 poly-ubiquitination via the lysine 63 linkage in a dosage-dependent manner. Interest- ingly, Wwp2 also regulates its own ligase activity in a similar manner. Moreover, auto-ubiquitination of Wwp2 occurs through an intra-molecular mechanism. Taken together, these results demonstrate a crucial role of Wwp2 in con- trolling endogenous Oct4 protein levels during differentiation processes of ECCs and suggest an interesting dosage- dependent mechanism for regulating the catalytic activity of the E3 ubiquitin ligase, Wwp2.
基金Supported by NIH/NCI,No.R00 CA127134 and No.R01CA160474a Department of Defense,No.W81XWH-10-1-1029,to Dai MSA Grant from Medical Research Foundation(MRF)of Oregon,to Sun XX
文摘Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes(DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. We recently reported that Otub1, a DUB from the OTU-domain containing protease family, is a novel p53 regulator. Interestingly, Otub1 abrogates p53 ubiquitination and stabilizes and activates p53 in cells independently of its deubiquitinating enzyme activity. Instead, it does so by inhibiting the MDM2 cognate ubiquitin-conjugating enzyme(E2) UbcH5. Otub1 also regulates other biological signaling through this non-canonical mechanism, suppression of E2, including the inhibition of DNA-damage-induced chromatin ubiquitination. Thus, Otub1 evolves as a unique DUB that mainly suppresses E2 to regulate substrates. Here we review the current progress made towards the understanding of the complex regulation of the p53 tumor suppressor pathway by DUBs, the biological function of Otub1 including its positive regulation of p53, and the mechanistic insights into how Otub1 suppresses E2.
文摘E3 ubiquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome.Therefore,E3 ubiquitin ligases play an essential role in a variety of biological processes including cell cycle regulation,proliferation and apoptosis.E3 ubiquitin ligases are often found overexpressed in human cancers,including lung cancer,and their deregulation has been shown to contribute to cancer development.However,the lack of specific inhibitors in clinical trials is a major issue in targeting E3 ubiquitin ligases with currently only one E3 ubiquitin ligase inhibitor being tested in the clinical setting.In this review,we focus on E3 ubiquitin ligases that have been found deregulated in lung cancer.Furthermore,we discuss the processes in which they are involved and evaluate them as potential anti-cancer targets.By better understanding the mechanisms by which E3 ubiquitin ligases regulate biological processes and their exact role in carcinogenesis,we can improve the development of specific E3 ubiquitin ligase inhibitors and pave the way for novel treatment strategies for cancer patients.
基金Acknowledgment We thank the laboratory, clinical and paramedical staff of the center of Reproductive Medicine, and the Departmerit of Forensic Medicine, Pathology for their assistance. We especially thank Dr Sheng-Bin Li for practical support. This study was supported by National Natural Science Foundation of China (No. 30471735) and Science & Technique Research Intensive Project of Education Ministry of China (No.105157) and Sci-Technical Development Project of Shaanxi Province, China (2005K15-G2, 2006K15-G4).
文摘Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was performed. Infertility factors such as immunological, infectious and biochemical disorders were examined to select patients with idiopathic infertility. DNA was isolated from peripheral blood of the selected patients and control population, which were examined for mutations using polymerase chain reaction-single strand conformation polymorphism analysis. Furthermore, nucleotide sequences were sequenced in some patients and controls. Results: Of 41 infertile men, 9 (22.0%, P = 0.01) had changes in USP26 gene on the X chromosome. A compound mutation (364insACA; 460G→A) was detected in 8 patients (19.5%, P = 0.01) and a 1044T→A substitution was found in 1 patient (2.4%, P 〉 0.05). All three variations led to changes in the coding amino acids. Two substitutions predict some changes: 460G→ A changes a valine into an isoleucine, and 1044T → A substitutes a leucine for a phenylalanine. Another insertion of three nucleotides ACA causes an insertion of threonine. No other changes were found in the remaining patients and fertile controls. Conclusion: The USP26 gene might be of importance in male reproduction. Mutations in this gene might be associated with male infertility, and might negatively affect testicular function. Further research on this issue is in progress.
基金supported by the 2007 Chang-Jiang Scholars Program, National Natural Science Foundation of China (30973393 & 30400071)"211" Projects grant (Biotechnology & Bioengineering Medicine and Biomaterial & Tissue Engineering)
文摘Objective To identify ubiquitinated proteins from complex human multiple myeloma (MM) U266 cells,a malignant disorder of differentiated human B cells.Methods Employing a globally proteomic strategy combining of immunoprecipitation,LC-MS/MS and SCX-LC-MS analysis to identified ubiquitination sites,which were identified by detecting signature peptides containing a GG-tag (114.1 Da) and an LRGG-tag (383.2 Da).Results In total,52 ubiquitinated proteins containing 73 ubiquitination sites of which 14 and 59 sites contained LRGG-tag and GG-tag were identified,respectively.Conclusion Classification analysis by of the proteins identified in the study based on the PANTHER showed that they were associated with multiple functional groups.This suggested the involvement of many endogenous proteins in the ubiquitination in MM.