Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv...Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃.展开更多
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b...separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.展开更多
Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in...Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in acid-catalyzed reactions and elucidating the effects of the defects in UiO-66 materials on their catalytic performances, in this work, a series of zirconium-containing UiO-66 samples were synthesized by varying the synthesis temperatures and BDC/Zr(terephthalic acid/ZrCl) ratios in the synthesis system.The synthesized UiO-66 samples were characterized by X-ray diffraction(XRD), Nadsorption-desorption,scanning electron microscopy(SEM), thermogravimetrical analysis(TGA), temperature-programmed desorption of NH(NH-TPD). Their catalytic performances were investigated in transesterification of tributyrin and soybean oil with methanol. The results showed that UiO-66 samples with different amounts of defects could be successfully prepared by varying the synthesis temperatures and/or the BDC/Zr ratios used in the synthesis system. The catalytic activities of the UiO-66 materials greatly depended on their linker defects and enhanced with the increase of the defect amount. The UiO-66 was an efficient catalyst for transesterification of tributyrin and soybean oil with methanol under mild reaction conditions and its catalytic activity was comparable to other solid acid catalysts reported in the literatures. The UiO-66 catalyst was relatively stable and could be reused.展开更多
基金Funded by the National Key Research and Development Program of China(No.2016YFC0209302)。
文摘Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃.
基金supported by the National Natural Science Foundation of China (21203017)Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-11-3)+1 种基金Program for Liaoning Excellent Talents in University (LNET)the Funda-mental Research Funds for the Central Universities (DC201502020304)~~
文摘separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.
基金supported by the National Science Foundation of China (Nos. 20971095 and 21576177)Research Project Supported by Shanxi Scholarship Council of China (2013-047)
文摘Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in acid-catalyzed reactions and elucidating the effects of the defects in UiO-66 materials on their catalytic performances, in this work, a series of zirconium-containing UiO-66 samples were synthesized by varying the synthesis temperatures and BDC/Zr(terephthalic acid/ZrCl) ratios in the synthesis system.The synthesized UiO-66 samples were characterized by X-ray diffraction(XRD), Nadsorption-desorption,scanning electron microscopy(SEM), thermogravimetrical analysis(TGA), temperature-programmed desorption of NH(NH-TPD). Their catalytic performances were investigated in transesterification of tributyrin and soybean oil with methanol. The results showed that UiO-66 samples with different amounts of defects could be successfully prepared by varying the synthesis temperatures and/or the BDC/Zr ratios used in the synthesis system. The catalytic activities of the UiO-66 materials greatly depended on their linker defects and enhanced with the increase of the defect amount. The UiO-66 was an efficient catalyst for transesterification of tributyrin and soybean oil with methanol under mild reaction conditions and its catalytic activity was comparable to other solid acid catalysts reported in the literatures. The UiO-66 catalyst was relatively stable and could be reused.