Three types of ligands have been developed for copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution. Ligands with large steric hindrance and strong electron-donating capa...Three types of ligands have been developed for copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution. Ligands with large steric hindrance and strong electron-donating capacity were beneficial to the reaction. UV–Vis and CV analyses demonstrated that these ligands had strong coordination with copper(I), implying the effect of ligand coordination ability on the stability and catalytic activity of catalytic system.展开更多
The nanostructured mesoporous Pd/MCM-41 catalyst was prepared by impregnation.This catalyst exhibited high activity and selectivity to piphenyl during Ullmann coupling reaction of iodobenzene.With Pd loading of 12%,th...The nanostructured mesoporous Pd/MCM-41 catalyst was prepared by impregnation.This catalyst exhibited high activity and selectivity to piphenyl during Ullmann coupling reaction of iodobenzene.With Pd loading of 12%,the biphenyl yield may reach 50%,showing its good potential to match the homogeneous catalyst in traditional Ullmann coupling reactions.Based on BET and XRD etc.characterizations,the relationship between the excellent catalytic properties of the Pd/MCM-41 and its structural characteristics was discussed briefly.展开更多
The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a ...The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.展开更多
Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clus...Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.展开更多
Pyridin-2-ol-N-oxide was designed as an efficient ligand for the coupling reaction of aryl iodides,aryl bromides and aryl chlorides,respectively,with primary amines,cyclic secondary amines or N-containing heterocycles...Pyridin-2-ol-N-oxide was designed as an efficient ligand for the coupling reaction of aryl iodides,aryl bromides and aryl chlorides,respectively,with primary amines,cyclic secondary amines or N-containing heterocycles at room or moderate temperature.The catalytic system showed great functional groups tolerance and excellent selective reactivity.展开更多
Carbon dioxide as both a selective agent and reaction media in the palladium-catalyzed Ullmann-type coupling has been described. The results showed that aryl chlorides could be easily activated in the presence of carb...Carbon dioxide as both a selective agent and reaction media in the palladium-catalyzed Ullmann-type coupling has been described. The results showed that aryl chlorides could be easily activated in the presence of carbon diox-ide and the chemoselectivity shifted toward the palladium-catalyzed Ullmann-type coupling reaction. In liquid car-bon dioxide, homocoupling reactions of aryl halides, including less reactive aryl chlorides, were carried out smoothly in moderate to good yields using Pd/C, zinc, and H2O as the catalytic system at room temperature.展开更多
Acetylene purification from methane is challenging in the field of porous organic polymers(POPs).Herein,we have provided one-pot Ullmann coupling reaction to synthesize a series of POPs with rich N-sites,named FJU-POP...Acetylene purification from methane is challenging in the field of porous organic polymers(POPs).Herein,we have provided one-pot Ullmann coupling reaction to synthesize a series of POPs with rich N-sites,named FJU-POP-n,wherein the low-cost and non-toxic Cu(acac)2 and environmental-friendly glycerol are employed as catalyst and solvent,respectively.展开更多
Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and a...Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and amines).In this review,we discuss the emerging trends in electrocatalytic C–N coupling reactions using CO_(2) and inorganic nitrogenous species(i.e.,dinitrogen(N_(2))),nitrate(NO_(2)^(-)),nitrite(NO_(3)^(-)),and ammonia(NH_(3))as raw materials.The related reaction mechanisms and potential design principles for advanced electrocatalysts are outlined.In addition,the effects of different reactors,including H-cells,membrane-based flow reactors,and membrane electrode assembly electrolyzers,on the coupling reactions are emphasized.Finally,the current challenges and future opportunities in this field are described.We aim to provide an up-to-date overview of the electrochemical C–N coupling system to advance progress toward its practical application.展开更多
BAY-069是目前体外活性最强的支链氨基酸转氨酶1(BCAT1)抑制剂,但其报道的合成路线存在原料成本较高、总收率极低和中间体结构表征不充分等缺点。本研究基于已有合成路线,重点对其合成工艺中的Ullmann偶联反应进行了系统优化。以1-硝基...BAY-069是目前体外活性最强的支链氨基酸转氨酶1(BCAT1)抑制剂,但其报道的合成路线存在原料成本较高、总收率极低和中间体结构表征不充分等缺点。本研究基于已有合成路线,重点对其合成工艺中的Ullmann偶联反应进行了系统优化。以1-硝基萘(1)为起始原料,经过7步反应和手性色谱柱手性拆分合成目标化合物BAY-069。所有中间体和目标化合物均经1 H NMR,13 C NMR和HR-MS表征。以Ullmann偶联反应为主要优化步骤的路线,其优化后的总收率为11.0%(3b→(±)-BAY-069),是原总收率1.6%(3a→(±)-BAY-069)的6.9倍。展开更多
In water, ammonium chloride was found to promote palladium-catalyzed Ullmann coupling reactions of aryl bromides. In the presence of Pd/C, zinc, NH4Cl, and water, coupling of various aryl bromides was carried out smoo...In water, ammonium chloride was found to promote palladium-catalyzed Ullmann coupling reactions of aryl bromides. In the presence of Pd/C, zinc, NH4Cl, and water, coupling of various aryl bromides was carried out smoothly to afford the corresponding homocoupling products in moderate yields.展开更多
基金Supported by the National Natural Science Foundation of China(21176038,21576044,21536002)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(21421005)the Dalian University of Technology Innovation Team(DUT2013TB07)
文摘Three types of ligands have been developed for copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution. Ligands with large steric hindrance and strong electron-donating capacity were beneficial to the reaction. UV–Vis and CV analyses demonstrated that these ligands had strong coordination with copper(I), implying the effect of ligand coordination ability on the stability and catalytic activity of catalytic system.
文摘The nanostructured mesoporous Pd/MCM-41 catalyst was prepared by impregnation.This catalyst exhibited high activity and selectivity to piphenyl during Ullmann coupling reaction of iodobenzene.With Pd loading of 12%,the biphenyl yield may reach 50%,showing its good potential to match the homogeneous catalyst in traditional Ullmann coupling reactions.Based on BET and XRD etc.characterizations,the relationship between the excellent catalytic properties of the Pd/MCM-41 and its structural characteristics was discussed briefly.
基金National Natural Science Foundation of China,Grant/Award Numbers:42277485,21976141,22272197,22102184,22102136,U22A20392Natural Science Foundation of Hubei Province,Grant/Award Numbers:2022CFB1001,2021CFA034+1 种基金Department of Education of Hubei Province,Grant/Award Numbers:Q20221701,Q20221704Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2022008。
文摘The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.
基金financially supported by the Shanghai Natural Science Foundation (No. 13ZR1400300)National Key R&D Program of China (No. 2017YFB030900)
文摘Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.
基金We gratefully acknowledge the National Natural Science Foundation(Nos.81172934,30973607,20972160 and 21172220)the National Basic Research Program of China(No.2009CB940900)the Special Foundation of President,and the Strategic Leading Science&Technology Programme of the Chinese Academy of Sciences for their financial support.
文摘Pyridin-2-ol-N-oxide was designed as an efficient ligand for the coupling reaction of aryl iodides,aryl bromides and aryl chlorides,respectively,with primary amines,cyclic secondary amines or N-containing heterocycles at room or moderate temperature.The catalytic system showed great functional groups tolerance and excellent selective reactivity.
基金the National Natural Science Foundation of China (No. 20202002), Hunan Province Department of Education (No. 02C211) and Hunan Normal University (2001).
文摘Carbon dioxide as both a selective agent and reaction media in the palladium-catalyzed Ullmann-type coupling has been described. The results showed that aryl chlorides could be easily activated in the presence of carbon diox-ide and the chemoselectivity shifted toward the palladium-catalyzed Ullmann-type coupling reaction. In liquid car-bon dioxide, homocoupling reactions of aryl halides, including less reactive aryl chlorides, were carried out smoothly in moderate to good yields using Pd/C, zinc, and H2O as the catalytic system at room temperature.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.21975044,21971038 and 219722810)Fujian Provincial Department of Science and Technology(2018J07001,2019L3004,2019H6012 and 2021H0062).
文摘Acetylene purification from methane is challenging in the field of porous organic polymers(POPs).Herein,we have provided one-pot Ullmann coupling reaction to synthesize a series of POPs with rich N-sites,named FJU-POP-n,wherein the low-cost and non-toxic Cu(acac)2 and environmental-friendly glycerol are employed as catalyst and solvent,respectively.
基金This work was financially supported in part by the National Key R&D Program of China(2020YFA0406103)NSFC(21725102,22122506,91961106,U1832156,22105192,22075267)+4 种基金Strategic Priority Research Program of the CAS(XDPB14)the Open Funding Project of National Key Laboratory of Human Factors Engineering(SYFD062010K)Anhui Provincial Natural Science Foundation(2008085J05)Youth Innovation Promotion Association of CAS(2019444)China Post-doctoral Science Foundation(2021M693065,2021TQ0322).
文摘Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and amines).In this review,we discuss the emerging trends in electrocatalytic C–N coupling reactions using CO_(2) and inorganic nitrogenous species(i.e.,dinitrogen(N_(2))),nitrate(NO_(2)^(-)),nitrite(NO_(3)^(-)),and ammonia(NH_(3))as raw materials.The related reaction mechanisms and potential design principles for advanced electrocatalysts are outlined.In addition,the effects of different reactors,including H-cells,membrane-based flow reactors,and membrane electrode assembly electrolyzers,on the coupling reactions are emphasized.Finally,the current challenges and future opportunities in this field are described.We aim to provide an up-to-date overview of the electrochemical C–N coupling system to advance progress toward its practical application.
文摘BAY-069是目前体外活性最强的支链氨基酸转氨酶1(BCAT1)抑制剂,但其报道的合成路线存在原料成本较高、总收率极低和中间体结构表征不充分等缺点。本研究基于已有合成路线,重点对其合成工艺中的Ullmann偶联反应进行了系统优化。以1-硝基萘(1)为起始原料,经过7步反应和手性色谱柱手性拆分合成目标化合物BAY-069。所有中间体和目标化合物均经1 H NMR,13 C NMR和HR-MS表征。以Ullmann偶联反应为主要优化步骤的路线,其优化后的总收率为11.0%(3b→(±)-BAY-069),是原总收率1.6%(3a→(±)-BAY-069)的6.9倍。
基金Project supported by the National Natural Science Foundation of China (No. 20202002) Hunan Province Department of Education (No. 02C211) and Hunan Normal University (2001).
文摘In water, ammonium chloride was found to promote palladium-catalyzed Ullmann coupling reactions of aryl bromides. In the presence of Pd/C, zinc, NH4Cl, and water, coupling of various aryl bromides was carried out smoothly to afford the corresponding homocoupling products in moderate yields.