期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DIAGNOSTICS OF FATIGUE CRACK IN ULTERIOR PLACES OF LARGER-SCALE OVERLOADED SUPPORTING SHAFT BASED ON TIME SERIES AND NEURAL NETWORKS 被引量:2
1
作者 LI Xueiun BIN Guangfu CHU Fulei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期79-82,共4页
To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue cr... To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue crack’s degree based on analyzing the vibration characteristics of the supporting shaft. By analyzing the characteristic parameter which is easy to be detected from the supporting shaft’s exterior, the time series model parameter which is hypersensitive to the situation of fatigue crack in ulterior place of the supporting shaft is the target input of neural network, and the fatigue crack’s degree value of supporting shaft is the output. The BP network model can be built and net-work can be trained after the structural parameters of network are selected. Furthermore, choosing the other two different group data can test the network. The test result will verify the validity of the BP network model. The result of experiment shows that the method of time series and neural network are effective to diagnose the occurrence and the development of the fatigue crack’s degree in ulterior place of the supporting shaft. 展开更多
关键词 Neural network Time series Larger-scale overloaded Supporting shaft ulterior place Fatigue crack
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部