The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate te...The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate tensile strength(b) were investigated, and the relationship between b and LDAS was founded. (La+Ce) mischmetal has stronger ability to refine LDAs than pure La or pure Ce. The proper adding amounts of it is 0.15% (mass fraction). LDAs has a remarkable effect on ah of casting, which can be predicted by the regression equation obtained in this work.展开更多
The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to eval...The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to evaluate the joint strength due to the enrichment of boron.To change the chemical composition of the weld metal,boron trioxide powder was blended with virgin flux in various proportions(2.5%−12.5%),which led to an increase in boron weight percentage in the range of 0−0.0065.The results show that weld metals(WM)optical micrographs depict the various types of ferrites,pearlites and secondary phases like martensite-austenite(M-A).Acicular ferrite content was influenced by the boron trioxide addition.Heat affected zone(HAZ)micrographs were not showing appreciable changes with oxide enrichment.Hardness and toughness of weld metals showed the mixed trend with B_(2)O_(3) enrichment whereas,small reduction in ultimate tensile strength(UTS)and yield strength(YS)was observed.展开更多
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ...Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.展开更多
To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was in...To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.展开更多
The microstructure and mechanical properties of friction stir processed Al−Mg2Si alloys were studied by TEM and EBSD.The results showed that an increase in the tool rotation speed(300−700 r/min)led to a decrease in th...The microstructure and mechanical properties of friction stir processed Al−Mg2Si alloys were studied by TEM and EBSD.The results showed that an increase in the tool rotation speed(300−700 r/min)led to a decrease in the defect area(from 10.5 mm2 to zero),whereas the defect area demonstrated the opposite trend(increased to 1.5 mm2 from zero)upon further increasing the rotation speed(700−1200 r/min).The types of defects were transformed from tunnel defects to fusion defects as the rotational speed increased.The coarse Mg2Si dendrites were broken and fine particles(smaller than 10mm)formed in the weld nugget(WN).The amount of low-angle grain boundaries increased significantly from 57.7%to 83.6%,which was caused by an increase in the content of the deformed structure(from 1.7%to 13.6%).The hardness,ultimate tensile strength(UTS)and elongation were all greatly improved for the weld nugget.The hardness values of the WNs had the following order:R300<R1200<R500<R900<R700.The UTS and elongation had the following order:BM(base material)<R300<R1200<R500<R900<R700.The UTS and the elongation for the WN were increased by one and three times,respectively.展开更多
Cupping therapy has been widely used for clinical treatment of soft tissue lesions. The current study investigated the effects of cupping therapy on biomechanical properties of the skin in Wistar rats. 20 rats were di...Cupping therapy has been widely used for clinical treatment of soft tissue lesions. The current study investigated the effects of cupping therapy on biomechanical properties of the skin in Wistar rats. 20 rats were divided into two groups: 10 in experimental and 10 in control group. Either the right or the left lower quadrants of the lumbar regions in the experimental group underwent 10 minutes daily cupping therapy for 12 days. The skin stiffness and ultimate tensile strength of all the rats were measured using tensiometer. The skin stiffness and ultimate tensile strength were decreased significantly in cupping side of the experimental group as compared with the non-cupping side and the control group. There were no significant differences between the non-cupping side of the experimental group and the control group. In conclusion, cupping therapy can be useful as a treatment method to reduce the skin stiffness and ultimate tensile strength.展开更多
Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected...Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 A1 alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.展开更多
In the present study, microstructure and texture of drawn copper wires with a large number of transverse grain boundaries have been characterized and their mechanical properties have been analyzed. The results show th...In the present study, microstructure and texture of drawn copper wires with a large number of transverse grain boundaries have been characterized and their mechanical properties have been analyzed. The results show that the texture evolution is accelerated by transverse grain boundary and the saturation value 60% of volume fraction of 〈111〉 fiber texture component is reached rapidly with increasing strain. For the microstructure of drawn wires with a large number of transverse grain boundaries, the critical strain, where lamellar boundaries form, is less than that for wires with equiaxed grains or columnar grains (all grain boundaries parallel to axis direction). Since transverse grain boundary accelerates grain subdivision and dislocation density increases rapidly in drawn wires with a large number of transverse grain boundaries, there are a higher flow stress and a higher work hardening rate.展开更多
Cu-0.45 Cr-0.2 Zr-xLa(x = 0-0.48) alloys were prepared by vacuum casting. The effects of La addition and orientation on the microstructure and properties of the as-cast alloy were investigated by an optical microsco...Cu-0.45 Cr-0.2 Zr-xLa(x = 0-0.48) alloys were prepared by vacuum casting. The effects of La addition and orientation on the microstructure and properties of the as-cast alloy were investigated by an optical microscope, a scanning electron microscope with an energy dispersive X-ray spectrometer, a tensile testing machine and an electrical conductivity tester. The result shows that the addition of La significantly refines the columnar grainsize and decreases the secondary dendrite arm spacing. Trace addition of La improves the room temperature ultimate tensile strength,elongation and electrical conductivity mainly by purifying during melting and casting. The ultimate tensile strength, elongation and electrical conductivity significantly decrease with the increase of La content due to formation of coarse particles and oxides, which severely harm the performance of the Cu-0.45 Cr-0.2 Zr-xLa alloys. The Cu-0.45 Cr-0.2 Zr-0.13 La alloy possesses a good combination of room temperature ultimate tensile strength, elongation and electrical conductivity. In addition, room temperature ultimate tensile strength and electrical conductivity along transverse direction of the ingot are higher than that along longitudinal direction,which is mainly ascribed to different distribution of grain boundary and grain orientation.展开更多
The effect of electromagnetic stirring(EMS)on the distribution of Nb particles in solidified microstructure of a Cu-5wt%Nb alloy were studied.In this paper,we have Cu-5wt%Nb alloy remelted and solidified with or witho...The effect of electromagnetic stirring(EMS)on the distribution of Nb particles in solidified microstructure of a Cu-5wt%Nb alloy were studied.In this paper,we have Cu-5wt%Nb alloy remelted and solidified with or without electromagnetic stirring,to study the effect of EMS on the distribution of Nb phase and the hardness of ingots.The 300A/16Hz EMS has refined the mircostrucrure of Cu-5%Nb alloy,with smaller particles sizes and larger amounts,and is benefit to the homogenous distribution of particles.The fitted lognormal distribution of particles diameter that in case without or with EMS are compared,and the EMS case has the highest frequency percentage in the range of smaller size. EMS considerably increased the hardness of Cu-5%Nb alloy ingot.展开更多
This article focuses on the hybridization of thermoplastic polymer matrices with conducting polymers and graphene derivatives.Polypropylene(PP),polymethylmethacrylate(PMMA)and polyox-ymethylene(POM)were used as primar...This article focuses on the hybridization of thermoplastic polymer matrices with conducting polymers and graphene derivatives.Polypropylene(PP),polymethylmethacrylate(PMMA)and polyox-ymethylene(POM)were used as primary polymer matrices and polypyrrole(PPY)and polyaniline(PANI)as secondary conducting polymers.Highly conductive-reduced graphene oxide(rGO)and graphene(G)have been used as reinforcements.A Taguchi analy-sis has been performed for the blends to find the optimal combi-nation of the blends with respect to electrical conductivity(σ)and mechanical properties.Both electrical and mechanical properties were improved by the hybridization process.The maximum elec-trical conductivity of 0.85 S.cm^(−1) has been acquired with POM/PPY/G blend with 3 wt.%and 5 wt.%of PPY and graphene load-ing,respectively.The mechanical properties have been found to improve with all the blends but,PP/PPY/G blend with 3 wt.%and 6 wt.%of PPY and graphene loading displays overall better prop-erties in comparison with other blends.展开更多
Magnetic field has great impact on the second phase distribution in metal solidification process.In this paper, we have Cu-20wt%Nb alloy remelted and solidified with or without the imposition of magnetic field,to stud...Magnetic field has great impact on the second phase distribution in metal solidification process.In this paper, we have Cu-20wt%Nb alloy remelted and solidified with or without the imposition of magnetic field,to study the effect of magnetic field on the distribution of Nb phase and the properties of deformed wires.Magnetic field has an inhibiting effect on the ripening process of Nb particles,and is benefit to the prolongation of Nb-rich phase in deformed wires.Both the ultimate tensile strength and conductivity in 1 T case is larger than that in 0 T case.展开更多
文摘The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate tensile strength(b) were investigated, and the relationship between b and LDAS was founded. (La+Ce) mischmetal has stronger ability to refine LDAs than pure La or pure Ce. The proper adding amounts of it is 0.15% (mass fraction). LDAs has a remarkable effect on ah of casting, which can be predicted by the regression equation obtained in this work.
文摘The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to evaluate the joint strength due to the enrichment of boron.To change the chemical composition of the weld metal,boron trioxide powder was blended with virgin flux in various proportions(2.5%−12.5%),which led to an increase in boron weight percentage in the range of 0−0.0065.The results show that weld metals(WM)optical micrographs depict the various types of ferrites,pearlites and secondary phases like martensite-austenite(M-A).Acicular ferrite content was influenced by the boron trioxide addition.Heat affected zone(HAZ)micrographs were not showing appreciable changes with oxide enrichment.Hardness and toughness of weld metals showed the mixed trend with B_(2)O_(3) enrichment whereas,small reduction in ultimate tensile strength(UTS)and yield strength(YS)was observed.
文摘Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.
基金The work was supported by the National Natural Science Foundation of China(No.51401115)the Promoted Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,China(No.BS2013CL034)partially by the Fundamental Research Funds of Shandong University,China(2016JC016).
文摘To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.
基金Project(51594011)supported by the National Natural Science Foundation of ChinaProject((2017)5633)supported by the Program for the Distinguished Young Scientific Talents of Guizhou,ChinaProject((2017)021)supported by the Guizhou Provincial Higher Education Engineering Research Center,China。
文摘The microstructure and mechanical properties of friction stir processed Al−Mg2Si alloys were studied by TEM and EBSD.The results showed that an increase in the tool rotation speed(300−700 r/min)led to a decrease in the defect area(from 10.5 mm2 to zero),whereas the defect area demonstrated the opposite trend(increased to 1.5 mm2 from zero)upon further increasing the rotation speed(700−1200 r/min).The types of defects were transformed from tunnel defects to fusion defects as the rotational speed increased.The coarse Mg2Si dendrites were broken and fine particles(smaller than 10mm)formed in the weld nugget(WN).The amount of low-angle grain boundaries increased significantly from 57.7%to 83.6%,which was caused by an increase in the content of the deformed structure(from 1.7%to 13.6%).The hardness,ultimate tensile strength(UTS)and elongation were all greatly improved for the weld nugget.The hardness values of the WNs had the following order:R300<R1200<R500<R900<R700.The UTS and elongation had the following order:BM(base material)<R300<R1200<R500<R900<R700.The UTS and the elongation for the WN were increased by one and three times,respectively.
文摘Cupping therapy has been widely used for clinical treatment of soft tissue lesions. The current study investigated the effects of cupping therapy on biomechanical properties of the skin in Wistar rats. 20 rats were divided into two groups: 10 in experimental and 10 in control group. Either the right or the left lower quadrants of the lumbar regions in the experimental group underwent 10 minutes daily cupping therapy for 12 days. The skin stiffness and ultimate tensile strength of all the rats were measured using tensiometer. The skin stiffness and ultimate tensile strength were decreased significantly in cupping side of the experimental group as compared with the non-cupping side and the control group. There were no significant differences between the non-cupping side of the experimental group and the control group. In conclusion, cupping therapy can be useful as a treatment method to reduce the skin stiffness and ultimate tensile strength.
文摘Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 A1 alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.
基金the financial support of the National Natural Science Foundation of China(Nos.51171135and 50890171)the Key Science and Technology Program of Shaanxi Province,China(No.2012K07-08)
文摘In the present study, microstructure and texture of drawn copper wires with a large number of transverse grain boundaries have been characterized and their mechanical properties have been analyzed. The results show that the texture evolution is accelerated by transverse grain boundary and the saturation value 60% of volume fraction of 〈111〉 fiber texture component is reached rapidly with increasing strain. For the microstructure of drawn wires with a large number of transverse grain boundaries, the critical strain, where lamellar boundaries form, is less than that for wires with equiaxed grains or columnar grains (all grain boundaries parallel to axis direction). Since transverse grain boundary accelerates grain subdivision and dislocation density increases rapidly in drawn wires with a large number of transverse grain boundaries, there are a higher flow stress and a higher work hardening rate.
基金Project supported by the Fund of Independent Innovation in Shandong Province(2013CXB60201)the Science and Technology Development Project of Shandong Province(2014GGX102003)+1 种基金the Independent Innovation and Achievements Transformation Special Project of Shandong Province(2014CGZH0102)the Fundamental Research Funds of Shandong University(2016JC016)
文摘Cu-0.45 Cr-0.2 Zr-xLa(x = 0-0.48) alloys were prepared by vacuum casting. The effects of La addition and orientation on the microstructure and properties of the as-cast alloy were investigated by an optical microscope, a scanning electron microscope with an energy dispersive X-ray spectrometer, a tensile testing machine and an electrical conductivity tester. The result shows that the addition of La significantly refines the columnar grainsize and decreases the secondary dendrite arm spacing. Trace addition of La improves the room temperature ultimate tensile strength,elongation and electrical conductivity mainly by purifying during melting and casting. The ultimate tensile strength, elongation and electrical conductivity significantly decrease with the increase of La content due to formation of coarse particles and oxides, which severely harm the performance of the Cu-0.45 Cr-0.2 Zr-xLa alloys. The Cu-0.45 Cr-0.2 Zr-0.13 La alloy possesses a good combination of room temperature ultimate tensile strength, elongation and electrical conductivity. In addition, room temperature ultimate tensile strength and electrical conductivity along transverse direction of the ingot are higher than that along longitudinal direction,which is mainly ascribed to different distribution of grain boundary and grain orientation.
基金Item Sponsored by the National Natural Science Foundation of China[No.50901019]the Fundamental Research Funds for the Central Universities[No.N100409009]+4 种基金the Wuhan National High Magnetic Field Center[No.WHMFCKF2011007]China Postdoctoral Science Foundation[No.20100471458]the National Natural Science Foundation of China[No.51004038]National High-tech R&D Program of China[No.2007AA03Z519]the 111 Project of China(No.B07015)
文摘The effect of electromagnetic stirring(EMS)on the distribution of Nb particles in solidified microstructure of a Cu-5wt%Nb alloy were studied.In this paper,we have Cu-5wt%Nb alloy remelted and solidified with or without electromagnetic stirring,to study the effect of EMS on the distribution of Nb phase and the hardness of ingots.The 300A/16Hz EMS has refined the mircostrucrure of Cu-5%Nb alloy,with smaller particles sizes and larger amounts,and is benefit to the homogenous distribution of particles.The fitted lognormal distribution of particles diameter that in case without or with EMS are compared,and the EMS case has the highest frequency percentage in the range of smaller size. EMS considerably increased the hardness of Cu-5%Nb alloy ingot.
基金This work was supported by the Ministry of Business,Innovation,and Employment[Grant no.3706657],New Zealand.
文摘This article focuses on the hybridization of thermoplastic polymer matrices with conducting polymers and graphene derivatives.Polypropylene(PP),polymethylmethacrylate(PMMA)and polyox-ymethylene(POM)were used as primary polymer matrices and polypyrrole(PPY)and polyaniline(PANI)as secondary conducting polymers.Highly conductive-reduced graphene oxide(rGO)and graphene(G)have been used as reinforcements.A Taguchi analy-sis has been performed for the blends to find the optimal combi-nation of the blends with respect to electrical conductivity(σ)and mechanical properties.Both electrical and mechanical properties were improved by the hybridization process.The maximum elec-trical conductivity of 0.85 S.cm^(−1) has been acquired with POM/PPY/G blend with 3 wt.%and 5 wt.%of PPY and graphene load-ing,respectively.The mechanical properties have been found to improve with all the blends but,PP/PPY/G blend with 3 wt.%and 6 wt.%of PPY and graphene loading displays overall better prop-erties in comparison with other blends.
基金Item Sponsored by the National Natural Science Foundation of China[No.50901019]the Fundamental Research Funds for the Central Universities[No.N100409009]+4 种基金the Wuhan National High Magnetic Field Center[No.WHMFCKF201107]China Postdoctoral Science Foundation[No.20100471458]the National Natural Science Foundation of China[No.51004038]National High-tech R&D Program of China[No.2007AA03Z519]the 111 Project of China (No.B07015)
文摘Magnetic field has great impact on the second phase distribution in metal solidification process.In this paper, we have Cu-20wt%Nb alloy remelted and solidified with or without the imposition of magnetic field,to study the effect of magnetic field on the distribution of Nb phase and the properties of deformed wires.Magnetic field has an inhibiting effect on the ripening process of Nb particles,and is benefit to the prolongation of Nb-rich phase in deformed wires.Both the ultimate tensile strength and conductivity in 1 T case is larger than that in 0 T case.