Small angle neutron scattering(SANS) technique has been used to investigate the Ni_(50)Mo_(50) system prepared by mechanical alloying(MA). Significant changes of the scattering intensity have been observed among the s...Small angle neutron scattering(SANS) technique has been used to investigate the Ni_(50)Mo_(50) system prepared by mechanical alloying(MA). Significant changes of the scattering intensity have been observed among the samples with different milling time.Interesting fractal-like behavior of the sample system have been found and attempts have been made to determine the fractal dimensions. It is expected that the fractal dimension can be related to the different stages of MA to some extent.展开更多
A 9 Cr-oxide dispersion strengthened(ODS)steel was thermally aged at 873 K for up to 5000 h.The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scat...A 9 Cr-oxide dispersion strengthened(ODS)steel was thermally aged at 873 K for up to 5000 h.The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scattering under a magnetic field.Combined with transmission electron microscopy,Vickers micro-hardness tests and electron backscattered diffraction measurements,all the results showed that the thermal treatment had little or no effect on the size distributions and volume fractions of the oxide nanoparticles in the ferromagnetic matrix,which suggested excellent thermal stability of the 9 Cr-ODS steel.展开更多
The objective of this study is to design an elastic neutron scattering system<span><span style="font-family:;" "=""> according to the angle with a sample using thermal neutron beam...The objective of this study is to design an elastic neutron scattering system<span><span style="font-family:;" "=""> according to the angle with a sample using thermal neutron beam at the Dalat <span>Nuclear Reactor (DNR). The system is used for research and training in the</span> field <span>of material structure analysis by neutron scattering and diffraction tech</span>nique</span></span><span><span style="font-family:;" "="">s</span></span><span><span style="font-family:;" "="">. It is designed on the basis of inheriting the neutron measurement spectrometer systems at the DNR and the scattered neutron measurement systems in the world. The measuring system, which was installed at the hori<span>zontal channel</span></span></span><span><span style="font-family:;" "=""> </span></span><span><span style="font-family:;" "="">4 of the DNR, consists of </span></span><span><span style="font-family:;" "="">5-helium-3 detectors and a fully</span></span><span><span style="font-family:;" "=""> electronic system to record the scatter counts <span>and a mechanical system with the possibility of rotating at 15</span></span></span><span><span style="font-family:;" "=""><span style="white-space:nowrap;"><span style="white-space:nowrap;">˚</span></span></span></span><span><span style="font-family:;" "="">-</span></span><span><span style="font-family:;" "="">75</span></span><span><span style="font-family:;" "=""><span style="white-space:nowrap;"><span style="white-space:nowrap;">˚</span></span></span></span><span><span style="font-family:;" "=""> </span></span><span><span style="font-family:;" "="">angles. The constructed system is tested for <span>evaluation of the accuracy, stability and reliability of the mechanical and</span> electronic systems of moving detector</span></span><span><span style="font-family:;" "="">s</span></span><span><span style="font-family:;" "=""> by angles.</span></span>展开更多
Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micr...Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, Dll in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented.展开更多
Dimer impurity in the solution of a generation five(G5) polyamidoamine(PAMAM) dendrimer has been investigated by small-angle neutron scattering(SANS). The existence of dimer impurity in dendrimer solution was evidence...Dimer impurity in the solution of a generation five(G5) polyamidoamine(PAMAM) dendrimer has been investigated by small-angle neutron scattering(SANS). The existence of dimer impurity in dendrimer solution was evidenced by indirect Fourier transform(IFT) analysis of the SANS data, in which the maximum dimension of particles in solution was found to be about twice the diameter of G5 dendrimer. We then developed an analytical model which accounts for the scattering contribution from both dendrimer monomer and dimer. The experimental data were well fitted by using the established model. The results showed that the amount of dimer impurities is significant for the measured three batches of G5 PAMAM dendrimers.展开更多
Here we review recent small-angle scattering studies of the vortex lattice in a range of type-II superconductors carried out by our group. Emphasis is placed on providing examples of the kind of information which can ...Here we review recent small-angle scattering studies of the vortex lattice in a range of type-II superconductors carried out by our group. Emphasis is placed on providing examples of the kind of information which can be obtained by such measurements, focusing in particular on studies of the vortex lattice structure and form factor in LuNi2B2C, TmNi2B2C, CeCoIn5 and Ba(Fe0.93Co0.07)2As2.展开更多
为了研究He在材料中的行为,借助10B的(n,α)核反应,通过反应堆热中子对Al-B合金进行辐照,引入He原子密度达6.2×1025 m-3。采用同步辐射X射线小角散射法(Synchrotron small angle X-ray scattering,SAXS)原位测试了不同温度下合金...为了研究He在材料中的行为,借助10B的(n,α)核反应,通过反应堆热中子对Al-B合金进行辐照,引入He原子密度达6.2×1025 m-3。采用同步辐射X射线小角散射法(Synchrotron small angle X-ray scattering,SAXS)原位测试了不同温度下合金中He的状态变化,并结合透射电镜(Transmission electron microscope,TEM)对试样进行了观察;采用X射线衍射和中子衍射法分析了合金晶格参数的变化。SAXS分析表明,随着温度升高试样内部的颗粒和孔洞消失,He泡数量不断增多、尺寸增大。700 oC下He泡的半径大约增大到10 nm,与室温时颗粒和孔洞相当。衍射分析表明,B原子引入使得Al晶格常数增大,但不存在可见的第二相,中子辐照使得生成的Li和He原子进入Al晶格,进一步加大了晶格常数。辐照后的样品加热使得He从晶格间隙位置扩散到晶界形成He泡,从而缓解了对晶格的挤压,导致了晶格常数的回复减小,第一性原理计算得到的间隙原子B、Li、He引起的晶格肿胀解释了这一结果。展开更多
文摘Small angle neutron scattering(SANS) technique has been used to investigate the Ni_(50)Mo_(50) system prepared by mechanical alloying(MA). Significant changes of the scattering intensity have been observed among the samples with different milling time.Interesting fractal-like behavior of the sample system have been found and attempts have been made to determine the fractal dimensions. It is expected that the fractal dimension can be related to the different stages of MA to some extent.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0702400)。
文摘A 9 Cr-oxide dispersion strengthened(ODS)steel was thermally aged at 873 K for up to 5000 h.The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scattering under a magnetic field.Combined with transmission electron microscopy,Vickers micro-hardness tests and electron backscattered diffraction measurements,all the results showed that the thermal treatment had little or no effect on the size distributions and volume fractions of the oxide nanoparticles in the ferromagnetic matrix,which suggested excellent thermal stability of the 9 Cr-ODS steel.
文摘The objective of this study is to design an elastic neutron scattering system<span><span style="font-family:;" "=""> according to the angle with a sample using thermal neutron beam at the Dalat <span>Nuclear Reactor (DNR). The system is used for research and training in the</span> field <span>of material structure analysis by neutron scattering and diffraction tech</span>nique</span></span><span><span style="font-family:;" "="">s</span></span><span><span style="font-family:;" "="">. It is designed on the basis of inheriting the neutron measurement spectrometer systems at the DNR and the scattered neutron measurement systems in the world. The measuring system, which was installed at the hori<span>zontal channel</span></span></span><span><span style="font-family:;" "=""> </span></span><span><span style="font-family:;" "="">4 of the DNR, consists of </span></span><span><span style="font-family:;" "="">5-helium-3 detectors and a fully</span></span><span><span style="font-family:;" "=""> electronic system to record the scatter counts <span>and a mechanical system with the possibility of rotating at 15</span></span></span><span><span style="font-family:;" "=""><span style="white-space:nowrap;"><span style="white-space:nowrap;">˚</span></span></span></span><span><span style="font-family:;" "="">-</span></span><span><span style="font-family:;" "="">75</span></span><span><span style="font-family:;" "=""><span style="white-space:nowrap;"><span style="white-space:nowrap;">˚</span></span></span></span><span><span style="font-family:;" "=""> </span></span><span><span style="font-family:;" "="">angles. The constructed system is tested for <span>evaluation of the accuracy, stability and reliability of the mechanical and</span> electronic systems of moving detector</span></span><span><span style="font-family:;" "="">s</span></span><span><span style="font-family:;" "=""> by angles.</span></span>
基金Supported by National Natural Science Foundation of China(21474119,11305191)
文摘Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, Dll in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented.
基金financially supported by the National Natural Science Foundation of China (Nos. 11475267, 11005159, and 21725402)
文摘Dimer impurity in the solution of a generation five(G5) polyamidoamine(PAMAM) dendrimer has been investigated by small-angle neutron scattering(SANS). The existence of dimer impurity in dendrimer solution was evidenced by indirect Fourier transform(IFT) analysis of the SANS data, in which the maximum dimension of particles in solution was found to be about twice the diameter of G5 dendrimer. We then developed an analytical model which accounts for the scattering contribution from both dendrimer monomer and dimer. The experimental data were well fitted by using the established model. The results showed that the amount of dimer impurities is significant for the measured three batches of G5 PAMAM dendrimers.
基金Acknowledgements M.R. Eskildsen was supported by the U. S. National Science Foundation through grant DMR-0804887. Collaboration and stimulating discussions are acknowledged with: A. B. Abrahamsen, T. M. Artemova, E. D. Bauer, A. D. Bianchi, T. D. Blasius, S. L. Bud'ko, P. C. Canfield, P. Das, L. DeBeer-Schmitt, J. M. Densmore, C. D. Dewhurst, Z. Fisk, E. M. Forgan, J. L. Gavilano, S. Gerber, A. I. Coldman, M. Ichioka, R. Ikeda, N. Jenkins, M. Kenzelmann, V. G. Kogan, J. Kohlbrecher, A. Kreyssig, M. Laver, K. Machida, J. Mesot, R. Movshovich, N. Ni, T. O'Brien, C. Petrovic, R. Prozorov, K. Rovira, J. L. Sarrao, I. S. Veshchunov, L. Ya. Vinnikov. J. S. White and M. Zolliker.
文摘Here we review recent small-angle scattering studies of the vortex lattice in a range of type-II superconductors carried out by our group. Emphasis is placed on providing examples of the kind of information which can be obtained by such measurements, focusing in particular on studies of the vortex lattice structure and form factor in LuNi2B2C, TmNi2B2C, CeCoIn5 and Ba(Fe0.93Co0.07)2As2.
文摘为了研究He在材料中的行为,借助10B的(n,α)核反应,通过反应堆热中子对Al-B合金进行辐照,引入He原子密度达6.2×1025 m-3。采用同步辐射X射线小角散射法(Synchrotron small angle X-ray scattering,SAXS)原位测试了不同温度下合金中He的状态变化,并结合透射电镜(Transmission electron microscope,TEM)对试样进行了观察;采用X射线衍射和中子衍射法分析了合金晶格参数的变化。SAXS分析表明,随着温度升高试样内部的颗粒和孔洞消失,He泡数量不断增多、尺寸增大。700 oC下He泡的半径大约增大到10 nm,与室温时颗粒和孔洞相当。衍射分析表明,B原子引入使得Al晶格常数增大,但不存在可见的第二相,中子辐照使得生成的Li和He原子进入Al晶格,进一步加大了晶格常数。辐照后的样品加热使得He从晶格间隙位置扩散到晶界形成He泡,从而缓解了对晶格的挤压,导致了晶格常数的回复减小,第一性原理计算得到的间隙原子B、Li、He引起的晶格肿胀解释了这一结果。
文摘微小角中子散射(Very Small Angle Neutron Scattering,VSANS)谱仪是结构校准的有力工具。为了保证中国散裂中子源(China Spallation Neutron Source,CSNS)VSANS谱仪的运动部件满足重复定位精度优于±2μm的要求,设计了基于实验物理及工业控制系统(Experimental Physics and Industrial Control System,EPICS)软件架构的运动控制系统方案,并搭建了相应的运动控制系统样机。该样机使用步进电机、绝对式光栅和Beckhoff嵌入式控制器,实现了对平移台位置的全闭环控制。测试结果表明:该样机的重复定位精度优于±2μm,且具有稳定可靠性高的特点,很好地满足了CSNS VSANS谱仪的需要。